

ECONOMIC ENHANCEMENT THROUGH INFRASTRUCTURE STEWARDSHIP

IMPLEMENTATION OF MEPDG FOR ASPHALT PAVEMENT WITH RAP

ZAHID HOSSAIN, PH.D. Musharraf Zaman, Ph.D., P.E. Pranshoo Solanki, Ph.D. Ruzbeh Ghabchi, M.Sc. Dharamveer Singh, Ph.D. David Adje, M.Sc. Sharon Lewis, Ph.D.

OTCREOS10.1-45-F

Oklahoma Transportation Center 2601 Liberty Parkway, Suite 110 Midwest City, Oklahoma 73110 Phone: 405.732.6580 Fax: 405.732.6586 www.oktc.org

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

TECHNICAL REPORT DOCUMENTATION PAGE

1. REPORT NO. OTCREOS10.1-45-F	2. GOVER	INMENT ACCESSION NO.	3. RECIPIENTS CATALOG NC).				
4. TITLE AND SUBTITLE			5. REPORT DATE					
Implementation of MEPDG for	⁻ Asphalt	Pavements with	June 30, 2013					
RAP			6. PERFORMING ORGANIZAT	FION CODE				
Zahid Hossain Musharraf Zar	nan Pra	nshoo Solanki	6. FERI ORMING ORGANIZA					
Rouzbeh Ghabchi Dharamve	or Sinah	David Adie and						
Sharon Lewis	er ollign	, David Auje, and						
9. PERFORMING ORGANIZATION NAME AN	D ADDRESS	3	10. WORK UNIT NO.					
The University of Oklahoma, 1	hree Pa	rtners Place, Suite						
150. 201 David L. Boren Blvd	Norman	Oklahoma 73019-	11. CONTRACT OR GRANT NO	0.				
5300		,	DTRT06-G-0016					
12. SPONSORING AGENCY NAME AND ADD	RESS		13. TYPE OF REPORT AND PE	ERIOD COVERED				
Oklahoma Transportation Cer	iter		Final					
(Fiscal) 201 ATRC Stillwa	ter, OK	74078	April 2010- June 201	3				
(Technical) 2601 Liberty Park	way, Sui	te 110	14. SPONSORING AGENCY C	ODE				
Midwest City, OK 73110								
15. SUPPLEMENTARY NOTES	tor							
University transportation Cer	iler							
16. ABSTRACT								
This study explored the poten	itial of us	sing high reclaimed	asphalt pavement (RA	AP) content with				
hot mix asphalt (HMA) in bas	se and s	surface courses for	conditions prevailing i	in Oklahoma. A				
total of eight Superpave mixe	s (four n	nixes for each of two	o field demonstration s	sites) containing				
different percentages of RAP	namely	, 25% RAP and 409	% RAP for S3 base c	ourses and 0%				
RAP and 10% RAP for S4 sur	face cou	irses were designed	and tested. Besides t	he evaluation of				
laboratory and plant mixes, co	pres and	block samples colle	cted from test section	s were tested to				
examine their mechanistic pe	rformand	e and to estimate in	nput parameters need	ed for the 2002				
Mechanistic-Empirical Paven	nent De	sign Guide (MEP	DG). Furthermore, r	heological and				
chemical properties of virgin,	recover	ed and blended (vil	rgin binder mixed with	the recovered				
binder from RAP) were evaluation	ated. Th	e mechanistic chara	icteristics of mixes we	re evaluated by				
conducting creep compliance	e, dynam	nic modulus, Hamb	urg Wheel Track, and	d 4-point beam				
increases in the DAD content	The dur	esuits snowed reduc	ction in compliance of	the mix due to				
increase in the RAP content.		iamic modulus lest i	results mustrated that					
content reduced rutting susce	ntibility	as higher ughamic r	ure damage potential	of both S3 and				
S4 mixes Asphalt hinder rhec	logical t	and improved moisi	inificant increase of vis	cosity stiffness				
and performance grade (PG) of the	blended binders c	compared to the virgi	n counternarts				
Elemental analyses show significant increase in oxygen content in the blended bindors, which								
are in agreement with the rhe		characteristics of the	ne binders. Findings o	are in agreement with the rheological characteristics of the binders. Findings of this study are				
expected to be useful for pay	expected to be useful for pavement professional in analyzing and designing HMA mixes with							
	/ement p	professional in analy	zing and designing H	IMA mixes with				
high RAP contents.	/ement p	professional in analy	zing and designing H	IMA mixes with				
high RAP contents.		18. DISTRIBUTION STATEM	vzing and designing H	IMA mixes with				
high RAP contents. 17. KEY WORDS MEPDG, RAP, Dynamic Modu	lus,	18. DISTRIBUTION STATEM No restrictions. Th	vzing and designing ⊢ ≝NT Nis publication is availa	MA mixes with				
high RAP contents. 17. KEY WORDS MEPDG, RAP, Dynamic Modu HMA, Creep, Fatigue	llus,	18. DISTRIBUTION STATEN No restrictions. Th www.oktc.org and	vzing and designing ⊢ ^{IENT} is publication is availa from the NTIS.	ble at				

Unclassified

149 + covers

Unclassified

Approximate Conversions to SI Units				
Symbol	When you	Multiply by	To Find	Symbol
	know	LENGTH		
in	inches	25.40	millimeters	mm
ft	feet	0.3048	meters	m
yd	yards	0.9144	meters	m
, mi	miles	1.609	kilometers	km
		AREA		
	square		square	
in²	inches	645.2	millimeters	mm
ft²	square	0.0929	square	m²
	leet		meters	
yd²	square yards	0.8361	square meters	m²
ac	acres	0.4047	hectares	ha
mi ²	square	2 590	square	km²
	miles	2.370	kilometers	КШ
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft³	cubic feet	0.0283	cubic meters	m³
yd³	cubic yards	0.7645	cubic meters	m³
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.4536	kilograms	kg
т	short tons (2000 lb)	0.907	megagrams	Mg
	TEMPI	ERATURE	(exact)	
°F	degrees	(°F-32)/1.8	degrees	°C
	Fahrenheit		Celsius	-
F	ORCE and	PRESSUR	E or STRE	SS
lbf	poundforce	4.448	Newtons	N
lbf/in ²	poundforce	6.895	kilopascals	kPa
	per square inch	1	F	
per square men				

Approximate Conversions from SI Units					
Symbol	When you	Multiply by	To Find	Symbol	
	know	LENGTH			
mm	millimeters	0.0394	inches	in	
m	meters	3.281	feet	ft	
m	meters	1.094	yards	yd	
km	kilometers	0.6214	miles	mi	
		AREA			
mm²	square millimeters	0.00155	square inches	in²	
m²	square meters	10.764	square feet	ft²	
m²	square meters	1.196	square yards	yd²	
ha	hectares	2.471	acres	ac	
km²	square kilometers	0.3861	square miles	mi²	
		VOLUME			
mL	milliliters	0.0338	fluid ounces	fl oz	
L	liters	0.2642	gallons	gal	
m³	cubic meters	35.315	cubic feet	ft³	
m³	cubic meters	1.308	cubic yards	yd³	
		MASS			
g	grams	0.0353	ounces	oz	
kg	kilograms	2.205	pounds	lb	
Mg	megagrams	1.1023	short tons (2000 lb)	т	
	TEMPERATURE (exact)				
°C	degrees	9/5+32	degrees	°F	
	Celsius		Fahrenheit		
FORCE and PRESSURE or STRESS					
Ν	Newtons	0.2248	poundforce	lbf	
kPa	kilopascals	0.1450	poundforce	lbf/in ²	
			per square inch		

ACKNOWLEDMENTS

The authors are thankful to the Oklahoma Transportation Center (OkTC) and the Oklahoma Department of Transportation (ODOT) for providing financial support for this study. The authors acknowledge the assistance of Mr. Craig Parker of Silverstar Construction Co. in Moore, Oklahoma, and Mr. Bill Mashunkashey of Schwarz Paving Co. in Oklahoma City, Oklahoma, for the selection of RAP and construction of field demonstration projects of this study. Without their unparallel support the field demonstrations reported in this report would not have been possible. The assistance provided by Mr. Darin Metzer from EST, Inc. in Moore, Oklahoma the volumetric mix design part of this study is acknowledged.

The authors are grateful to Dr. Arnulf (Arni) Hagen from OkTC for his assistance in organizing the Technology Transfer workshop of this study. The authors are thankful to Dr. Joakim Laguros, retired David Ross Boyd Professor Emeritus of the School of Civil Engineering and Environmental Science (CEES) at the University of Oklahoma (OU), for the technical assistance that he provided in the planning and in the early stage of this project. The authors are thankful to Ms. Marcella Donovan and Mr. Philip Lawrence, both from ODOT, for their assistance in recovering binders from RAP samples of this project. The authors are also grateful to Jackson Autrey from OU for his assistance with the laboratory testing, and to Karen Horne and Leah Moser, both from OU, for their administrative assistance in this project.

IMPLEMENTATION OF MEPDG FOR ASPHALT PAVEMENTS WITH RAP

Final Report OTCREOS10.1-45 June 30, 2013

Zahid Hossain, Ph.D. Musharraf Zaman, Ph.D., P.E. Pranshoo Solanki, Ph.D. Rouzbeh Ghabchi, Ph.D. Candidate Dharamveer Singh, Ph.D. David Adje, M.Sc. College of Engineering The University of Oklahoma 202 W. Boyd, Street, CEC 106 Norman, Oklahoma 73019

and

Sharon Lewis, Ph.D.

Department of Chemistry Langston University Langston, Oklahoma 73050

Oklahoma Transportation Center (OkTC) 2601 Liberty Parkway, Suite 110 Midwest City, Oklahoma 73110 June 2013

TABLE OF CONTENTS

1	IN	TRODUCTION	. 1
	1.1	Problem Statement	. 1
	1.2	Purpose	. 1
	1.3	Scope and Objectives	. 2
	1.4	Purpose	.4
	1.5	Scope and Objectives	. 4
2	В	ACKGROUND	. 7
	2.1	MEPDG Input Parameters and Their Significance	. 7
	2.2	Blending of Recovered and Virgin Binders	. 7
	2.3	Mechanistic Evaluation of RAP Mixes	. 9
3	MA	TERIALS AND METHODS	13
	3.1	Selection of RAP Samples	13
	3.2	Recovery of Binder and Aggregate	13
	3.	2.1 The Abson Recovery Method	13
	3.	2.2 The NCAT Ignition Oven Method	14
	3.3	Field Constructions	14
	3.	2.1 Test Site for RAP1	14
	3.	3.2 Test Sites for RAP2	29
	3.4	Rheological Evaluation of Binders	33
	3.	4.1 Superpave Tests	33
	3.	4.2 Elemental Analysis	34
	3.5	Mechanistic Evaluation of Asphalt Mixes	34
	3.	5.1 Hamburg Wheel Track Test	34
	3.	5.2 Fatigue Test	36
	3.	5.3 Dynamic Modulus	37
	3.	5.4 Creep Compliance Test	39
	3.	5.5 Indirect Tensile Strength Test	41
4	AS	PHALT BINDER TEST RESULTS	43
	4.1	Performance Grading of Binders	43

4.2 Rotational Viscosity	44
4.3 MEPDG Input Parameter for Binders with RAP	46
4.4 Chemical Analyses	49
5 AGGREGATE PROPERTIES TEST RESULTS AND DISCUSSIONS	50
5.1 RAP1	50
5.1.1 Gradation	50
5.1.2 Specific Gravity	51
5.1.3 L.A. Abrasion Test	54
5.1.4 Micro-Deval	55
5.1.5 Sand Equivalent Test	56
5.1.6 Total Insoluble Residue	58
5.2 RAP2	60
5.2.1 Gradation	60
5.2.2 Specific Gravity	61
5.2.3 Durability	61
5.2.4 Sand Equivalent	61
5.2.5 Insoluble Residue	62
5.3 Summary	64
6. MIX TEST RESULTS AND DISCUSSIONS	65
6.1 RAP1	65
6.1.1 Volumetric Properties	65
6.1.2 Mix Performance	65
6.1.2.1 Rut and Moisture Resistance	65
6.1.2.2 Fatigue Life	68
6.1.3 MEPDG Inputs	70
6.1.3.1 Dynamic Modulus	70
6.1.3.2 Creep Compliance	79
6.1.3.3 Poisson's Ratio and Indirect Tensile Strength	87
6.2 RAP2	90
6.2.1 Volumetric Properties	90
6.2.2 Mix Performance	90

6.2.2.1 Rut and Moisture Resistance	90
6.2.2.2 Fatigue Life	92
6.2.3 MEPDG Inputs	93
6.2.3.1 Dynamic Modulus	93
6.2.3.2 Indirect Tensile Strength	99
6.2.3.3 Creep Compliance	100
6.3 Summary	
7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	107
7.1 Summary	
7.2 Conclusions	107
7.3 Recommendations	109
8 IMPLEMENTATION/TECHNOLOGY TRANSFER	110
8.1 Implementation and Technology Transfer Workshop	110
8.2 Journal and Proceedings Papers	111
8.2.1 Referred Journal Papers	111
8.2.2 Referred Conference Papers	111
8.2.3 Referred Conference Abstracts	112
8.2.4 Posters	113
8.2.5 Thesis/Dissertation	113
REFERENCES	114
APPENDIX A: Trial Mix Designs for HMA Mixes	

LIST OF FIGURES

Figure 3.1	(a) Processing of RAP1 millings, (b) Stockpile of RAP1 millings, (c) Cl	ose
	view of I-35 (RAP1) millings, and (d) Collection of I-35 (RAP1) millings	s.16
Figure 3.2	Test Site Location on York Drive.	17
Figure 3.3	Right of Way Before Soil Stabilization.	17
Figure 3.4	Process of Mixing CKD With the Subgrade	18
Figure 3.5	Watering During the Stabilization Process.	18
Figure 3.6	Leveling of the Stabilized Soil	19
Figure 3.7	Stabilized Subgrade	19
Figure 3.8	Laydown Operation of S3-25 Layer (South Lane).	21
Figure 3.9	Compaction of S3-25 Layer with Steel Drum Roller	21
Figure 3.10	Compaction of S3-25 Layer With Rubber-Tire Roller.	22
Figure 3.11	Laydown of S4-0 Layer (South Lane)	23
Figure 3.12	Laydown and Compaction of S4-0 Layer (South Lane)	23
Figure 3.13	Placement of Paper During Laydown of S4 Layers.	24
Figure 3.14	Laydown of S3-40 Layer (North Lane)	25
Figure 3.15	Laydown of S4-10 Layer Over S3-40 Layer (North Lane)	25
Figure 3.16	Coring Operation S3-25 (South Lane)	28
Figure 3.17	Core locations.	28
Figure 3.18	Patching Process of the Holes.	28
Figure 3.19	Plate Compaction During Patching Holes	29
Figure 3.20	Test Site Located on 178 Street North May, Oklahoma City	30
Figure 3.21	The Paving Machine Used for Test Site 2.	31
Figure 3.22	Construction of S3 Lift for Test Site 2	31
Figure 3.23	Compaction of S3 Lift for Site 2	32
Figure 3.24	Coring in Progress for Test Site 2	32
Figure 3.25	Obtained Cores from S3 Layer for Test Site 2	33
Figure 3.26	(a) Hamburg Test Setup (b) During Testing with Loaded Wheels (c)	
	Specimen Before Test (d) Specimen After Test.	35
Figure 3.27	AMPT ATM-100 Used for Fatigue Tests	37

Figure 3.28	(a) Equipment setup for dynamic modulus, (b) E* specimen inside the	
	Environmental Chamber	. 37
Figure 3.29	(a) Brass Gauge Points on Creep Specimen, (b) LVDT Mounted Onto	the
	Brass Gauge Points, (c) Equipment Setup for Both Creep Compliance	
	and Dynamic Modulus Testing, (d) Creep Compliance Specimen Inside	e
	the Environment Chamber	. 41
Figure 4.1	Performace Grade of the RAP1 Blended Binders.	. 43
Figure 4.2	Performance Grade of RAP2 Blended Binders.	. 44
Figure 4.3	Viscosity Test Results of the Blended Binders.	. 45
Figure 4.4	Rotational Viscosity Data of Blended Binders.	. 46
Figure 4.5	MEPDG Input Parameters (G*) of RAP1 Blended Binders	. 47
Figure 4.6	MEPDG Input Parameters (δ values) for RAP1 Blended Binders	. 47
Figure 4.7	MEPDG Input Parameters (G*) of RAP2 Blended Binders	. 48
Figure 4.8	MEPDG Input Parameters (δ values) for RAP2 Blended Binders	. 48
Figure 5.1	Apparatus Used for determination of Specific Gravity of Coarse	
	Aggregates.	. 52
Figure 5.2	Apparatus Used for determination of Specific Gravity of Fine Aggregate	es.
		. 53
Figure 5.3	Apparatus Used for L.A. abrasion Test	. 54
Figure 5.4	Apparatus Used for Micro-Deval Test	. 56
Figure 5.5	Sand Equivalent Test Setup	. 59
Figure 6.1	Hamburg Curves of S3 Mixes with RAP1	. 66
Figure 6.2	Hamburg Curves of S4 Mixes with RAP1	. 67
Figure 6.3	Average Hamburg Curves of S3 and S4 Mixes with RAP1	. 68
Figure 6.4	Plot of Average Dynamic Moduli for S3-25 Mix with RAP1	. 72
Figure 6.5	Plot of Average Dynamic Moduli for S3-40 Mix with RAP1	. 75
Figure 6.6	Plot of Average Dynamic Moduli for S4-0 Mix with RAP1	. 75
Figure 6.7	Plot of Average Dynamic Moduli for S4-10 Mix with RAP1	. 76
Figure 6.8	Comparison of Dynamic Moduli for S3-25 and S3-40 Mixes with RAP1	. 77

Figure 6.10	Comparison of Shift Factor Used for Generating Master Curves for S3-25
	and S3-40 mixes with RAP178
Figure 6.11	Comparison of Shift Factor Used for Generating the Master Curves for
	S4-0 and S4-10 Mixes with RAP179
Figure 6.12	Variation of Creep Compliance of S3-25 Mix (RAP1) with Temperature.83
Figure 6.13	Variation of Creep Compliance of S3-40 Mix (RAP1) with Temperature.83
Figure 6.14	Variation of Creep Compliance for S4-0 Mix (RAP1) with Temperature. 84
Figure 6.15	Variation of Creep Compliance of S4-10 (RAP1) with Temperature84
Figure 6.16	Comparison of Creep Compliance Master Curves for S3-25 and S3-40
	with RAP185
Figure 6.17	Comparison of Creep Compliance Master Curves for S4-0 and S4-10
	with RAP1
Figure 6.18	Poisson's Ratio of S3-25, S3-40, S4-0, and S4-10 Mixes with RAP188
Figure 6.19	Indirect Tensile Strength of S3-25, S3-40, S4-0, and S4-10 Mixes with
	RAP1 at a Temperature of 14°F89
Figure 6.20	Hamburg Curves of S3 and S4 Mixes with RAP291
Figure 6.21	Average Hamburg Curves of S3 and S4 Mixes with RAP2
Figure 6.22	Plot of Average Dynamic Moduli for S3-25% RAP2 Mix95
Figure 6.23	Plot of Average Dynamic Moduli for S3-40% RAP2 Mix95
Figure 6.24	Plot of Average Dynamic Moduli for S4-25% RAP2 Mix96
Figure 6.25	Dynamic Modulus Master Curves of S3-25% RAP2 and S3-40% RAP2
	Mixes
Figure 6.26	Dynamic Modulus Master Curve for S4-10% RAP2 Mix97
Figure 6.27	Shift Factor for Generating Master Curves for S3-25% RAP2 and S3-40%
	RAP2 mixes
Figure 6.28	Shift Factor Used for Generating the Master Curve of S4-25% RAP2
	Mix
Figure 6.29	Indirect Tensile Strength of S3 and S4 Mixes at a Temperature of
	14°F100
Figure 6.30	Variation of Creep Compliance for S3-25%RAP2 Mix with
	Temperature101

Figure 6.31	Variation of Creep Compliance for S3-40%RAP2 Mix with	
	Temperature	102
Figure 6.32	Variation of Creep Compliance for S4-25%RAP2 Mix with	
	Temperature	102
Figure 6.33	Creep Compliance Master Curves for S3-25% RAP2 and S3-4%	
	RAP2	104
Figure 6.34	Creep Compliance Master Curves for S4-25% RAP2	105
Figure A.1	Mix Design Sheet for S3 Mix with 40% RAP1	126
Figure A.2	Mix Design Sheet for S4 Mix with 10% RAP1	127
Figure A.3	Mix Design Sheet for S3 Mix with 25% RAP1 (Provided by the	
	Contractor)	128
Figure A.4	Mix Design Sheet for S4 Mix without any RAP1 (Provided by the	
	Contractor)	129
Figure A.5	Mix Design of S3+25% RAP2	130
Figure A.6	Mix Design of S3+40% RAP2	131
Figure A.7	Mix Design of S4+10% RAP2	132
Figure A.8	Mix Design of S4+25%RAP2	133

LIST OF TABLES

Table 3.1	Descriptions of Cores from S3 Layers	26
Table 3.2	Descriptions of Cores from S4 Layers	27
Table 4.1	Chemical Compositions of RAP1 Blended Binders	49
Table 4.2	Chemical Compositions of RAP2 Blended Binders	49
Table 5.1	Aggregates and RAP1 Gradations (Percent Passing)	50
Table 5.2	Specific Gravity Values of Aggregates of RAP1 Mixes	54
Table 5.3	Summary of Mix Gradation for S3-25 and S3-40 of RAP1 Mixes	57
Table 5.4	Summary of Aggregates Properties and Volumetric Properties of S3-25 a	and
	S3-40 of RAP1 Mixes	57
Table 5.5	Summary of Mix Gradation and Volumetric Properties for S4-0 and S4-10)
	of RAP1 Mixes	58
Table 5.6	Summary of Aggregates and Volumetric Properties for S4-0 and S4-10 o	f
	RAP1 Mixes	58
Table 5.7	Insoluble Residue Test Results of RAP1 Aggregates	60
Table 5.8	Sand Equivalent Test Results on Aggregates	62
Table 5.9	Insoluble Residue Results for Site 2 Aggregates	63
Table 6.1	Fatigue Test Results Conducted on the Asphalt Mixes with RAP1	69
Table 6.2	Summary of Volumetric Characteristics of Specimens Tested for Dynami	С
	Modulus with RAP1 at Project on York Drive	71
Table 6.3	Dynamic Moduli of S3-25 and S3-40 Mixes with RAP1	73
Table 6.4	Dynamic Moduli of S4-0 and S4-10 Mixes with RAP1	74
Table 6.5	Air Voids, G_{mb} , and G_{mm} of Specimens Tested for Creep Compliance of	
	Project on York Drive	80
Table 6.6	Creep Compliance (D(t) in 1/psi) values for S3-25 Mix with RAP1	80
Table 6.7	Creep Compliance (D(t) in 1/psi) values for S3-40 Mix with RAP1	81
Table 6.8	Creep Compliance (D(t) in 1/psi) values for S4-0 Mix with RAP1	81
Table 6.9	Creep Compliance (D(t) in 1/psi) Values for S4-10 Mix with RAP1	82
Table 6.10	Poisson's Ratio for S3 and S4 Mixes with RAP1	82
Table 6.11	Indirect Tensile Strength (psi) for S3 and S4 Mixes with RAP1	82
Table 6.12	Fatigue Test Results Conducted on the Asphalt Mixes from RAP 2 Site	93

Table 6.13	Dynamic Moduli (ksi) of S3-25% RAP2, S3-45% RAP2 and S4-25% RA	NP2
	Mixes	94
Table 6.14	Indirect Tensile Strength for S3 and S4 Mixes	99
Table 6.15	Creep Compliance (D(t) in 1/MPa) values for S3-25% RAP2 Mix	. 101
Table 6.16	Creep Compliance (D(t) in 1/MPa) values for S3-40% RAP2 Mix	. 103
Table 6.17	Creep Compliance (D(t) in 1/MPa) values for S4-25% RAP2 Mix	. 104
Table A.1	Percent Passing of S3 Mix with 40% RAP1 and PG 64-220K Binder:	
	Trial #1	. 122
Table A.2	Percent Passing of S3 Mix with 40% RAP1 and PG 64-220K Binder:	
	Trial #2	. 122
Table A.3	Percent Passing of S3 Mix with 40% RAP1 and PG 64-220K Binder:	
	Trial #3	. 123
Table A.4	Percent Passing of S3 Mix with 40% RAP1 and PG 64-220K Binder:	
	Trial #4	. 123
Table A.5	Percent Passing of S4 Mix with 10% RAP1 and PG 64-220K Binder:	
	Trial #1	. 124
Table A.6	Percent Passing of S4 Mix with 10% RAP1 and PG 64-220K Binder:	
	Trial #2	. 124
Table A.7	Percent Passing for S4 Mix with 10% RAP1 and PG 64-22OK Binder:	
	Trial #3	. 125

EXECUTIVE SUMMARY

This study conducted laboratory and field evaluation of local reclaimed asphalt pavement (RAP) samples and virgin materials (aggregate and binders) for conditions prevailing in Oklahoma. To this end, two RAPs were collected for laboratory evaluation and stockpiled for the construction of two test sections. Different percentages (25% and 40% in base [S3] courses and 0% and 10% in surface [S4] courses) of each RAP were used to prepare S3 and S4 mixes. Virgin aggregates and binders used in the new HMA mixes were also collected from local sources and evaluated in the laboratory. Furthermore, in cooperation from two local contractors, two two-lane HMA test sections were constructed. One lane of each test section was constructed with the maximum allowable RAP (0% in S4 mix and 25% in S3 mix) and the other lane was constructed with high RAP (10% in S4 and 40% in S3). Cylindrical core and block samples were collected from the constructed pavement sections and evaluated (dynamic modulus, creep, and beam fatigue) in the laboratory. Also, the recovered binders from RAPs and blended (virgin binder mixed with recovered binder) binders were evaluated for viscosity, stiffness, PG grading and determination of MEPDG input parameters. Collected RAP samples were extracted using an NCAT Ignition Oven. The extracted aggregates were then evaluated in laboratory for mechanical and surface properties.

Rheological test results of asphalt binders reveal that the stiffness of the blended binder increases with an increase in the percentage of the RAP binder. With 10% RAP binder, there is no change in the PG grade of the virgin binder. On With 40% RAP binder, the high and low PG temperatures are about two grades and one grade, respectively, higher than those of the virgin binder. It is also noted that the viscosity and PG temperature do not change significantly with the addition of 0.5% anti-stripping agent. As expected, the complex modulus (G*) value decreases but the δ value increases with increased testing temperature. Another trend is that the G* value increases and the δ value decreases with an increase of the percentage of the RAP. The G* and δ values of blended binders under RTFO-aged condition at the range of temperature presented in this report can be used as Mechanistic-Empirical Pavement Design Guide (MEPDG) Level 1 input parameters.

X۷

Aggregate test results reveals the L.A. abrasion loss values and the Micro-Deval loss values of the mixes meet the aggregate soundness requirements set by Oklahoma Department of Transportation (ODOT). However, aggregates extracted by an NCAT oven show more L.A. abrasion loss values and Micro-Deval loss values, compared to their virgin counterparts. Sand equivalent tests show that NCAT oven-extracted aggregates with high RAP result in a significant increase in sand equivalent values compared to its virgin counterpart. Insoluble test results indicate that RAP aggregates do not meet the ODOT solubility requirement. Mix volumetric data show that the voids in mineral aggregate (VMA) and voids filled with aggregate (VFA) of the RAP mixes increased with increasing percentage of RAP.

Mechanistic test results of the RAP mixes show that the dynamic modulus of the mix containing high RAP is significantly higher than that of the virgin counterpart (no RAP). From Hamburg Wheel Test results, it is observed that rutting resistance of RAP mixes increases with an increase in RAP content. For instance, at 10,000 passes the S3-25 (air void content = 7.1%) and the S3-40 (air void content = 7.1%) mixes showed a rut depth of approximately 4.95 mm and 3.72 mm, respectively. Four point beam fatigue test results show that the lower the RAP content, the higher the fatigue life, irrespective of mix type (S3 or S4). However, more favorable effects in terms of fatigue life were observed in the case of S4 mixes compared to the S3 mixes when RAP is added in the mix. Indirect tensile strength (IDT) in all tested mixes decreased with an increase in the RAP content. The test results also showed that IDT of S3 (base course) mixes are very sensitive to the RAP content. For instance, a 15% increase in RAP content in the S3 mixes, reduces the IDT values by 23%. Also, it was observed that the IDT value of the S4 mix with 25% RAP was about 5% less than that of S3 mix with the same RAP content. The creep compliance results showed an increase in the stiffness and a decrease in compliance of the mix due to increased RAP content.

The findings of this study have been shared with pavement professionals through formal and informal acidities, which include a technology transfer workshop, meetings and collaborations with three local transportation agencies, a design firm and two contractors, and technical publications and presentations (three journal articles, seven proceedings papers, and eleven platform and four poster presentations).

1 INTRODUCTION

1.1 Problem Statement

Asphalt recycling has become an important topic in recent years because of its enhanced use in the construction of asphalt concrete (AC) pavements. The increasing demand of reclaimed asphalt pavement (RAP) is mainly due to the increasing cost of asphalt binders and scarcity of quality virgin aggregates, as well as due to increasing environmental awareness. RAP has already become one the most widely used recycled materials in the United States. Nationally, the use of RAP in new pavements is expected to be doubled by 2014 (NAPA, 2009). Even though the beneficial effects are high, several state agencies including Oklahoma Department of Transportation (ODOT) are not confident enough to use high percentages of RAP (more than 25% in base course and some RAP in surface course) on their roadways. The current state of practice for ODOT is to allow a maximum of 25% RAP in base courses and none in surface mixes. The current usage of RAP in roads of Oklahoma is significantly lower than the maximum allowable limit and is much lower than its neighboring states (Jones, 2008). This is partly because of the lack of mechanistic performance data and specifications of new hot mix asphalt (HMA) with RAP (Hossain et al., 2012; O'Rear et al., 2008). This study was undertaken to generate mechanistic performance data from laboratory testing on asphalt mixes containing higher amounts (up to 40% in base course and 10% in surface course) of RAP than currently used by ODOT. Also, as field demonstrations, two pavement sections were constructed using hot mix asphalt (HMA) containing these higher amounts of RAP.

1.2 Purpose

In the asphalt recycling process, the processed RAP is blended with virgin materials to produce new mixes. Consequently, the rheological and mechanistic characterization of recovered binders and aggregates from RAP is essential to attain proper blending in the mix design methods, and structural design and performance analysis of constructed pavements. The mechanistic properties of new mixes with RAP (amounts higher than currently used by ODOT, in this case) are important and necessary in input parameters in the Mechanistic-Empirical Pavement Design Guide

(MEPDG). Thus, the purpose of this study was to evaluate mechanistic properties HMA mixes with high RAP content.

1.3 Scope and Objectives

This study is limited to laboratory and field evaluation of local RAPs and virgin materials (aggregates and binders). To this end, bulk RAP samples were collected from two different sources for laboratory testing and also used to produce HMA for the construction of two test sections. Different percentages (25% and 40% in base courses and 0% and 10% in surface courses) of each RAP were blended with virgin aggregates and used to produce base and surface mixes. The mix design protocols were based on the specifications used by ODOT. Virgin aggregates and binders used in the new HMA mixes were collected from local sources and evaluated in the laboratory. Furthermore, in cooperation with two local contractors, two different test sections were constructed. One lane of each test these test sections was constructed with the maximum allowable RAP (0% in surface course and 25% in base course) while the other lane was constructed with high RAP (10% in surface course and 40% in base course). Cylindrical cores and block samples were collected from the constructed pavement sections and tested in the laboratory for dynamic modulus, creep, and beam fatigue.

The primary goal of this research is to evaluate the effect of RAP content on the properties and performance of the associated HMA mixes. Specifically, the following items were addressed: aggregate properties, volumetric mix design, dynamic modulus, creep compliance and indirect tensile strength. Two base mixes (S3-25 and S3-40) and two surface mixes (S4-0 and S-10) are used for this purpose, where S3-25 refers to a base mix with 25% RAP and S4-10 refers to a surface mix with 10% RAP. Specific objectives of the present study are given below:

- Collect field RAPs, virgin binders and aggregates for the design and construction of new HMA pavement sections.
- Evaluate the effects of different percentages (0%, 10%, 25%, and 40% RAP binder) of recovered binders from RAP on consistency values and performance grade (PG) (AASHTO M 320) of the virgin binders. Superpave binder test protocols, which include viscosity (AASHTO T 316), rotational thin film oven

(AASHTO T 240), pressure aging vessel (AASHTO R 28), dynamic shear rheometer (AASHTO T 315), and bending beam rheometer (AASHTO T 313) are used in the evaluation of the PG and flow behavior.

- Determine input parameters for virgin binders modified with different percentages of recovered binders from RAP in accordance with the MEPDG specifications.
- Examine the effects of different percentages of recover binders from RAP on the chemical compositions (Carbon, Hydrogen, Nitrogen and Oxygen) of the virgin binders through elemental analysis.
- Evaluate physical and mechanical properties of aggregates namely, gradation (AASHTO T 27 and T30), and specific gravity (AASHTO T84 and T85). The LA abrasion (AASHTO T96), the sand equivalent (AASHTO T 176), and insoluble residue (OHD L-25) are also assessed for each mix gradation used in this study.
- Perform volumetric mix designs of HMA containing RAP (namely, S3-25, S3-40 for base courses and S4-0 and S4-10 for surface courses), in accordance with the Superpave[®] test methods AASHTO M 323 and AASHTO R 35.
- Construct a field test section with these mix designs (namely, S3-25, S3-40 for base courses and S4-0 and S4-10 for surface courses).
- Collect core and block samples from the constructed field test sections and evaluate their performance, namely creep compliance and indirect tensile strength.
- Collect plant mixes used in the construction of the test section for laboratory testing, namely of dynamic modulus (E*), creep compliance and indirect tensile strength (IDT).
- Determine the input parameters for HMA mixes containing the aforementioned percentages of RAP for the implementation in M-EPDG Level 1 designs involving similar materials.

Asphalt recycling has become an important topic in recent years because of its enhanced use in the construction of asphalt concrete (AC) pavements. The increasing demand of reclaimed asphalt pavement (RAP) is mainly due to the increasing cost of asphalt binders and scarcity of quality virgin aggregates, as well as due to increasing environmental awareness. RAP has already become one the most widely used recycled materials in the United States. Nationally, the use of RAP in new pavements is expected to be doubled by 2014 (NAPA, 2009). Even though the beneficial effects are high, several state agencies including Oklahoma Department of Transportation (ODOT) are not confident enough to use high percentages of RAP (more than 25% in base course and some RAP in surface course) on their roadways. The current state of practice for ODOT is to allow a maximum of 25% RAP in base courses and none in surface mixes. The current usage of RAP in roads of Oklahoma is significantly lower than the maximum allowable limit and is much lower than its neighboring states (Jones, 2008). This is partly because of the lack of mechanistic performance data and specifications of new hot mix asphalt (HMA) with RAP (Hossain et al., 2012; O'Rear et al., 2008). This study was undertaken to generate mechanistic performance data from laboratory testing on asphalt mixes containing higher amounts (up to 40% in base course and 10% in surface course) of RAP than currently used by ODOT. Also, as field demonstrations, two pavement sections were constructed using hot mix asphalt (HMA) containing these higher amounts of RAP.

1.4 Purpose

In the asphalt recycling process, the processed RAP is blended with virgin materials to produce new mixes. Consequently, the rheological and mechanistic characterization of recovered binders and aggregates from RAP is essential to attain proper blending in the mix design methods, and structural design and performance analysis of constructed pavements. The mechanistic properties of new mixes with RAP (amounts higher than currently used by ODOT, in this case) are important and necessary in input parameters in the Mechanistic-Empirical Pavement Design Guide (MEPDG). Thus, the purpose of this study was to evaluate mechanistic properties HMA mixes with high RAP content.

1.5 Scope and Objectives

This study is limited to laboratory and field evaluation of local RAPs and virgin materials (aggregates and binders). To this end, bulk RAP samples were collected from two different sources for laboratory testing and also used to produce HMA for the

construction of two test sections. Different percentages (25% and 40% in base courses and 0% and 10% in surface courses) of each RAP were blended with virgin aggregates and used to produce base and surface mixes. The mix design protocols were based on the specifications used by ODOT. Virgin aggregates and binders used in the new HMA mixes were collected from local sources and evaluated in the laboratory. Furthermore, in cooperation with two local contractors, two different test sections were constructed. One lane of each test these test sections was constructed with the maximum allowable RAP (0% in surface course and 25% in base course) while the other lane was constructed with high RAP (10% in surface course and 40% in base course). Cylindrical cores and block samples were collected from the constructed pavement sections and tested in the laboratory for dynamic modulus, creep, and beam fatigue.

The primary goal of this research is to evaluate the effect of RAP content on the properties and performance of the associated HMA mixes. Specifically, the following items were addressed: aggregate properties, volumetric mix design, dynamic modulus, creep compliance and indirect tensile strength. Two base mixes (S3-25 and S3-40) and two surface mixes (S4-0 and S-10) are used for this purpose, where S3-25 refers to a base mix with 25% RAP and S4-10 refers to a surface mix with 10% RAP. Specific objectives of the present study are given below:

- Collect field RAPs, virgin binders and aggregates for the design and construction of new HMA pavement sections.
- Evaluate the effects of different percentages (0%, 10%, 25%, and 40% RAP binder) of recovered binders from RAP on consistency values and performance grade (PG) (AASHTO M 320) of the virgin binders. Superpave binder test protocols, which include viscosity (AASHTO T 316), rotational thin film oven (AASHTO T 240), pressure aging vessel (AASHTO R 28), dynamic shear rheometer (AASHTO T 315), and bending beam rheometer (AASHTO T 313) are used in the evaluation of the PG and flow behavior.
- Determine input parameters for virgin binders modified with different percentages of recovered binders from RAP in accordance with the MEPDG specifications.

- Examine the effects of different percentages of recover binders from RAP on the chemical compositions (Carbon, Hydrogen, Nitrogen and Oxygen) of the virgin binders through elemental analysis.
- Evaluate physical and mechanical properties of aggregates namely, gradation (AASHTO T 27 and T30), and specific gravity (AASHTO T84 and T85). The LA abrasion (AASHTO T96), the sand equivalent (AASHTO T 176), and insoluble residue (OHD L-25) are also assessed for each mix gradation used in this study.
- Perform volumetric mix designs of HMA containing RAP (namely, S3-25, S3-40 for base courses and S4-0 and S4-10 for surface courses), in accordance with the Superpave® test methods AASHTO M 323 and AASHTO R 35.
- Construct a field test section with these mix designs (namely, S3-25, S3-40 for base courses and S4-0 and S4-10 for surface courses).
- Collect core and block samples from the constructed field test sections and evaluate their performance, namely creep compliance and indirect tensile strength.
- Collect plant mixes used in the construction of the test section for laboratory testing, namely of dynamic modulus (E*), creep compliance and indirect tensile strength (IDT).
- Determine the input parameters for HMA mixes containing the aforementioned percentages of RAP for the implementation in M-EPDG Level 1 designs involving similar materials.

2 BACKGROUND

2.1 MEPDG Input Parameters and Their Significance

The MEPDG evaluates pavement performance by using local material properties as input (NCHRP, 2004). In the hierarchical approach used in the MEDPG, laboratory test data of asphalt mixes and asphalt binder are required for obtaining the highest reliability (Level 1). For Level 1 analysis, dynamic modulus (E*), creep compliance, and indirect tensile strength of the asphalt mix are required. On the other hand, dynamic shear modulus (G*) and phase angle (δ) values of the asphalt binder are combined with E* values of the mixes to estimate E* master curves for the design life of the pavement. For the intermediate level (Level 2), the asphalt binder's rheological test data are combined with volumetric properties of the mix to evaluate performance of the pavements. At the lowest design reliability (Level 3), volumetric properties of the mix are combined with the asphalt binder's performance grade (PG) to predict the performance of the mix. Pertinent to the evaluation of the performance of HMA mixes with RAP and the determination of MEDPG input parameters, a comprehensive review of existing literature was conducted in this study. A summary of this literature review is given below:

2.2 Blending of Recovered and Virgin Binders

In a laboratory study, McDaniel and Shah (2003) prepared samples with a RAP content of up to 50% to determined the effect of recycled materials on the mix performance. Prepared mixes were tested using a Superpave shear tester. It was observed that addition of RAP materials stiffened the mixture properties as compared to virgin mixes. The increased stiffness may improve the rutting resistance of the mix but it can also increase the potential for fatigue and thermal cracking. Decreasing the PG grade of the virgin binder may be an option to improve the fatigue performance of the mix, especially at high RAP content. These researchers highlighted that designing asphalt mixes that conform to the Superpave specifications may not be feasible at a RAP content greater than 40 to 50% due to the high fine contents of the RAP materials.

Mohammad et al. (2003) investigated the recycling of polymer-modified asphalt using laboratory testing. A polymer-modified mix with a RAP content varying from 0 to 60% was prepared and tested using indirect tensile strength, indirect tensile creep, repeated shear test, asphalt pavement analyzer, and beam fatigue. It was observed that as the RAP content increased, the rutting resistance of the mix increased while its fatigue resistance decreased.

Daniel et al. (2010) studied selected plat mixes in New Hampshire with different amounts of RAP and evaluated the PG grading of the binders and their critical temperatures for cracking. The binders were recovered by centrifuge (using trichloroethylene as a solvent) in accordance with the Abson method. These researchers also used an additional procedure to remove the last traces of trichloroethylene, if any, from the recovered binder. The additional process consisted of placing 35-gm of recovered binder in a RTFO bottle, placing the bottle in the oven rack, and rotating the rack for 10 minutes at 163°C. The RTFO residue was then considered as the "original" condition of the binder tested in a DSR at desired temperatures. They also performed further RTFO and PAV aging of the "original" binder to maintain consistent testing procedures with the virgin binders. It was observed that the high PG temperature remained the same, or only increased by one grade for the various percentages of RAP but the low PG temperature remained the same, or only increased by one grade from the virgin mix. They also observed that the critical cracking temperatures only change by a few degrees as the RAP percentages increase.

Dong et al. (2010) studied two PG binders (PG 58-22 and PG 64-22) and an aged binder (recovered from RAP of unknown original binder grade) while evaluating the performance of additives in RAP. The aged binder was recovered from RAPs using the Abson method. They reported significant aging of the recovered binder in terms of kinematic viscosity and penetration, among others. For example, the kinematic viscosities of the recovered binder and the PG 64-22 binder at 135°C were found to be 5275 mPa.s and 412 mPa.s, respectively. Similarly, the penetration values of the recovered binder and the PG 64-22 binder at 25°C were found to be 16 mm and 64 mm, respectively.

8

2.3 Mechanistic Evaluation of RAP Mixes

In a laboratory study, Daniel and Lachance (2005) examined the effect of increased RAP on the volumetric and mechanistic properties of asphalt mixes. A 19-mm Superpave mix containing 0% RAP (no RAP) was used as the control for evaluating properties of mixes containing 15%, 25%, and 40% RAP. Two types of RAP, a processed RAP and an unprocessed RAP (grindings) were evaluated. Testing included dynamic modulus in tension and compression, creep compliance in compression, and creep flow in compression. Dynamic modulus and creep compliance master curves were constructed using the time–temperature superposition principle to describe the behavior of each mix over a range of temperature. The voids in mineral aggregate (VMA) and voids filled with asphalt (VFA) of the RAP mix increased at 25% and 40% RAP contents, and there was also an influence of preheating time on the volumetric properties. The dynamic modulus of mixes containing processed RAPs increased from the control to 15% RAP level, but the dynamic modulus master curves of mixes containing 25% and 40% RAP were similar to that of the control mix in both tension and compression. The creep compliance curves showed similar trends.

Cross et al. (2007) evaluated dynamic modulus (E*) data of S3 mixes with up to 25% RAP for possible use in the MEDPG analysis by ODOT. It was reported that the presence of 25% RAP in a mixture had significant effects on the measured E* values. This study also reported that the binder's PG grade had a significant effect on the measured E* values. While comparing E* values of mixes with different PG grade binders, it concluded that that use of 25% RAP in a mix appeared to raise the PG grade of the new binder by approximately one grade. However, this study did not evaluate the PG grades or other MEPDG input parameters of asphalt binders.

Kim et al. (2007) studied the effect of RAP in HMA on creep compliance and indirect tensile (IDT) strength. In their study, four different percentages of RAP mixes namely, 0%, 25%, 35%, and 45% RAP, were designed. The control mix with 0% RAP was prepared with a virgin PG 67-22 binder. The 25% RAP mix was blended with a PG 64-22 binder, and the 35% and 45% RAP mixes were blended with a PG 58-28 binder. The Superpave IDT test and the energy ratio (ER) concept were used to assess the

cracking performance. The creep test was performed by applying a constant load for 1,000 seconds. Several parameters were determined from this test including creep compliance as a function of time. These properties were used to determine the mix's resistance to creep and damage. The IDT test was performed by subjecting a specimen to failure at a rate of 50 mm/min. The control mix showed a higher creep compliance rate than the mix containing 25% RAP. Although the 25% RAP mix was blended with a softer binder (PG 64-22), the RAP might have overcome the effect of the softer binder, resulting in a lower creep compliance rate than the control mix. However, the 35% RAP mix blended with a PG 58-28 binder showed a higher rate of creep compliance than the other mixes due to the softer asphalt binder. The 45% RAP mix with PG 58-28 binder had a reduced rate of creep compliance compared to the 35% RAP mix since it contained more RAP materials but the same virgin binder as the 35% RAP mix.

In a related study, Vargas (2007) tested the creep compliance and indirect tensile strength of HMA mixes containing RAP. Four types of RAP were combined at four levels (0%, 10%, 20% and 30%) with aggregates from four different sources. One source of virgin asphalt binder (PG 76-22) was used. The results showed an increase in creep compliance with temperature, as expected. Addition of RAP did not change the stiffness of the mix; no clear relationship between creep compliance and the RAP content was evident.

In another laboratory study, Li et al. (2008) investigated performance of ten asphalt mixes, including two different RAP sources, at three RAP contents (0, 20% and 40%) and two different asphalt binders (PG 58-28 and PG 58-34) by conducting dynamic modulus and semi-circular bending fracture tests. Results illustrated that the asphalt mixes containing RAP have higher dynamic moduli than those of the virgin mixes. The stiffer binder was found to result in higher dynamic modulus values for both the control and the RAP-modified mixes. Experimental data also show that the RAP source is not a significant factor for the dynamic modulus values at low temperatures, although it significantly affects dynamic modulus values at high temperatures. In addition to test temperature, the RAP content was found to significantly affect the semi-circular bending fracture resistance of mixes. However, at low temperature, the dynamic

modulus values for mixes containing a softer binder were higher than those of the mixes containing a stiffer binder.

Watson et al. (2008) studied the LA Abrasion loss of blended aggregates composed of different percentages (0%, 10%, 20% and 30%) of recycled SMA mixes and four virgin aggregates. Both RAP and virgin aggregates were granite materials used by the Georgia DOT. It was reported that properties of the blend such as LA abrasion loss was mainly influenced by the virgin aggregate source. The variation of the LA abrasion losses among RAP materials was found to be very small (within 3% difference). It was also observed that the angularity of aggregates in a RAP varied significantly from the original angularity due to brakeage during the original mix production, during milling, and during processing (crushing). It was concluded that up to 20% RAP can be used without significantly affecting the performance. The fatigue life is expected to reduce significantly with the addition of 30% RAP.

In a recent study, Tabaković et al. (2010) evaluated the physical properties of RAP and its influence on the mechanical performance of an asphalt mix. A series of mixes were designed containing varying percentages of RAP. A mix made from only virgin materials was selected as the control mix for the investigation. The effect of introducing RAP into the asphalt mix was evaluated through a series of laboratory tests including the Marshall test, the indirect tensile stiffness modulus test, the indirect tensile fatigue test and the water sensitivity test. A circular wheel track was developed in order to study the dynamic effects of a rolling wheel traveling over an asphalt pavement. The laboratory tests showed that the introduction of RAP to the mix resulted in an improvement in all mechanical properties. Specifically, it was found that the mix containing up to 30% RAP, exhibited improved fatigue resistance relative to the control mix manufactured from virgin materials.

Abdelrahman et al. (2010) investigated performance of a pavement base layer having a high RAP content using resilient modulus (M_r) as the primary indicator for base layer characterization. The test results indicated that M_r increases with RAP content, asphalt content and aggregate dry density. Overall, it was reported that RAP has a potential to be used in high percentages in pavement base layers than surface layers. In

another recent study, Alam et al. (2010) investigated the behavior of base course mixes containing different amounts. A mix was prepared by bleding RAP with varied quantities of local aggregates. Resilient modulus tests conducted on compacted spcimens showed that M_r value increases wih RAP contents.

In another recent study, McGraw et al. (2010) examined the effect of RAP on E^{*} of HMA. A total of 17 mixes containing various amounts of RAP (0%, 10%, 15%, 25% and 30%) were used with two types of binders (PG 58-28 and PG 51-34). It was found that the E^{*} increases with increasing RAP content and the differences are more pronounced at lower frequencies (high temperatures). The increase in E^{*} was noticeably higher in the mix containing 30% RAP than that of the control mix (0% RAP).

From the aforementioned studies, it is evident that many studies have focused on the performance of HMA mixes with lower percentages of RAP. In particular, there has been no doucmentation on the performance of HMA with high RAP contents in Oklahoma. The present study was pursued to address this weakness. It is also seen that a limited studies have evaluated the required MEPDG Level 1 input parameters for HMA mixes, espicially with high RAP contents. In particular, no comprehensive studies have addressed the implementation of the MEPDG for HMA mixes with high RAP contents. The present study attempts to address this research need.

3 MATERIALS AND METHODS

3.1 Selection of RAP Samples

In cooperation with ODOT and Oklahoma Asphalt Paving Association (OAPA) partners, two field RAP samples (RAP1 and RAP2) were collected. One of the RAPs was collected with the help of Silver Star Construction Co., located in Moore, OK. The second RAP sample (RAP2) was selected in cooperation with Schwartz Paving Co. in Oklahoma City, Oklahoma. The test sites are both city roads. Aggregates were extracted from RAP samples and the binder content was determined by using a NCAT Ignition Oven in accordance with OHD L-26 Method A (Methods of Test for Determination of Bitumen Content in Bituminous Paving Mixtures). Representative RAP samples were obtained in accordance with AASHTO T 168 (Sampling of Bituminous Paving Mixtures). About 800 gm of asphalt binder was recovered from each RAP sample in accordance with the Abson method, which is discussed later in this chapter. The recovery of asphalt binder was done at the Liquid Laboratory, ODOT Materials Division. The recovered binders from RAPs were evaluated for PG grading and determination of MEDPG input parameters. Collected RAP samples were extracted in accordance with the OHD L-26 Method using an NCAT Ignition Oven, which is discussed later in this chapter. The extracted aggregates were then evaluated for mechanical and surface properties such as durability, gradation and shape.

3.2 Recovery of Binder and Aggregate

3.2.1 The Abson Recovery Method

About 800 gm of asphalt binder is recovered from each RAP for further laboratory testing. At first, the asphalt binder in the RAP is extracted with trichloroethylene (TCE: C_2HCI_3) per AASHTO T 160 (AASHTO, 2008). In this method, the RAP is placed in a large, flat pan, and warmed in a 110 ± 5°C oven until it can be separated. The loose RAP is then placed in a bowl along with the solvent sufficient to cover the RAP. Sufficient time is allowed (typically up to one hour) for the solvent to disintegrate the loose RAP. The bowl containing the RAP and solvent is then placed in the vacuum extraction apparatus. The extract is then collected and centrifuged. The

centrifuge is started slowly and the speed gradually increased to a maximum of 3600 rpm until the solvent stops flowing through the drain. At this stage 200 mL or more trichloroethylene is added and the procedure is repeated at least three times.

The binder is recovered using the Abson method (AASHTO, 2008) according to AASHTO T 170. The solution from the previous extraction is centrifuged for a minimum of 30 minutes at 770 times gravity in a 250-mL to 500-mL wide-mouth bottles. The extracted solution is concentrated by a primary distillation process. The residue is then transferred from the primary distillation flask, using several washes of solvent to rinse the residue into the distillation flask. Afterwards, carbon dioxide (CO2) gas is introduced at a low rate (approximately 100 mL/min). This distillation process is continued until the temperature reaches 157°C to 160°C. The CO₂ gas flow is then increased to approximately 900 mL/minute. This flow rate and a temperature of 160°C to 166°C are maintained for 10 minutes before the process is considered complete.

3.2.2 The NCAT Ignition Oven Method

The NCAT Ignition Oven was used in accordance with OHD L-26 Method – A, for extraction of aggregates from RAP and HMA mixes. The amount of material for each batch of the extraction process was determined based on the nominal maximum size (NMAS). For instance, 2 kg of field RAP1 (FRAP1) sample was used during each extraction as its NMAS was 19 mm. Then the NCAT oven was preheated to 538°C, and an automated ignition process was initiated. The samples were burned until the measured weight loss did not exceed 0.1 gram for three consecutive minutes. The time required to achieve a constant weight was approximately 45 minutes. The extracted aggregate from the NCAT Ignition Oven are then set outside the oven to cool down naturally before handling for further testing.

3.3 Field Constructions

3.3.1 Test Site for RAP1

The test site for this study was selected in cooperation with Silver Star Construction Co. in Moore, Oklahoma. The RAP used in this project was milled from a section of I-35 (project number IMY-0035-2(311)088) and is located in McClain County

(near Purcell, Oklahoma). This I-35 section had a 1.5-inch overlay of HMA Type B with PMAC-1C binder in 1994 (Project Number: I-IR-35-2(198)081 Part 1) (Hobson, 2010). Before 1994, the section received a 2-in. of leveling course of HMA Type C with AC-3 binder in 1979 (Project Number: I-IR-35-2(133)082 Parts 1 and 2). The section also had an Open Graded Friction Surface Course (OGFSC) with the same AC-3 from Kerr McGee at Wynneewood, Oklahoma. The milling process started in the first week of August, 2010. The contractor (Silver Star Construction Co.) processed the collected asphalt millings by sizing and fractionating with a ³/₄-inch sieve as only the finer portion (passing ³/₄-inch sieve) would be used in the new HMA mix. Approximately, 2000 tons of processed asphalt millings were stockpiled separately for the construction of the test section in the present study. The test section was located on Franklin Road (near US-77) in Norman, Oklahoma.

Figures 3.1 (a) through 3.1(d) show photographic views of the processing and stockpiling of asphalt millings, a close view of millings and collection of processed millings (RAP) in bags. About 1200 lbs of the processed RAP were collected for laboratory evaluation. Henceforth, the processed (fractionated) millings noted above are RAP1. In addition to collection of RAP1, the research team collected four different types of virgin aggregates namely, #67 Rocks, 5/8-inch Chips, Screenings, Manufacture Sand, and Sand, to be used for the construction of the test section. Henceforth, the collected virgin aggregates will be called AGG1. A virgin PG 64-22 binder (from Valero Refinery at Ardmore, Oklahoma) was used for producing HMA nixes for the test section. This virgin binder was collected from the Silver Star Construction Company for laboratory evaluation.

The test site is a two-lane city road having a length of approximately 670 ft (Figure 3.2). Prior to paving, the existing silty clay subgrade was stabilized with 14% Cement Kiln Dust (CKD). The in-place density and water content of the stabilized subgrade was measured using a nuclear gauge in accordance with the ASTM D 6938 test method. At the end of the stabilization, the field density of the stabilized subgrade layer was reported to be 103.4% of the Standar Proctor density at a moisture content of 17.3%. The thickness of the subgrade soil was 6 in. Figures 3.3 through 3.7 show the

soil stabilization process. Figure 3.3 shows the right of way of the test site before the beginning of the soil stabilization process, while Figure 3.4 shows the pouring and mixing of the stabilizing agent (CKD) with the existing soil. Figure 3.5 shows the watering of the existing subgrade mix with the CKD, during the stabilization process. Figure 3.6 shows the leveling of the well-mixed subgrade with CKD before the beginning of compaction, while Figure 3.7 shows the stabilized subgrade after compaction and finish rolling.

Figure 3.1 (a) Processing of RAP1 millings, (b) Stockpile of RAP1 millings, (c) Close view of I-35 (RAP1) millings, and (d) Collection of I-35 (RAP1) millings

3.3.1.1 Construction of South Lane (S3-25 and S4-0 mixes)

The south lane of the test section was constructed with a S3-25 mix, overlaid by a S4-0 mix (current state of practice). The paving machine was equipped with an

electronic slope and grade control. The S3-25 layer was constructed in two lifts, each having a thickness of 3 in. (72 mm). On February 18, 2011, the first lift of S3-25 layer was constructed.

Figure 3.2 Test Site Location on York Drive.

Figure 3.3 Right of Way Before Soil Stabilization.

Figure 3.4 Process of Mixing CKD With the Subgrade.

Figure 3.5 Watering During the Stabilization Process.

Figure 3.6 Leveling of the Stabilized Soil.

Figure 3.7 Stabilized Subgrade.

The construction was behind the schedule because of a snow storm. After the laydown of the first lift (Figure 3.8), it was compacted using a vibratory compactor with steel drum roller (CAT PS-360B), as shown in Figure 3.9. The rolling pattern was
established on the basis of density readings obtained from a nuclear density gage (conducted by EST Inc., Norman, Oklahoma). Both density and temperature were recorded for each pass until the density started decreasing with the number of passes. During the trial compaction, it was found that three and a half passes would be enough to achieve the desired level of compaction. Therefore, it was decided to use only three passes for compaction. Following the vibratory compaction, a rubber-tire roller DYNAPAC CA-251 (Figure 3.10) was used to smoothen the surface. A total of five passes were made using this rubber-tire roller. Finally, the vibratory compactor (CAT PS-360B) was used again without any vibration for finish rolling. Only one pass was used this time. After the construction of the first lift, it's thickness was determined by taking three cores and measuring the thickness of each core. The thicknesses of these cores were 3.1 in., 2.9 in. and 3.0 in., with an average thickness of 3 in. Therefore, the same amount of mix (135 tons of material) was used to achieve the next 3 in. of the second lift. Due to the cold weather, the construction of the second S3 layer was postponed until February 21, 2011. Between the construction of the first and the second lifts of S3 layers, the Gutter Curb was constructed on February 19, 2011 using the curb machine (POWER CURBER 5700-C). On February 23, 2011, the second lift of the S3-25 layer was constructed using the same equipment and procedure as outlined above for the first lift.

Figure 3.8 Laydown Operation of S3-25 Layer (South Lane).

Figure 3.9 Compaction of S3-25 Layer with Steel Drum Roller

Figure 3.10 Compaction of S3-25 Layer With Rubber-Tire Roller.

After the construction of the S3 layers, a tack coat (SS-1HP) was sprayed on the S3 layer on February 26, 2011, before the construction of the S4 layers. The south lane of the test section was constructed with S4-0 mix (Figure 3.11 and Figure 3.12). During the paving of the S4-0 layer, paper was placed between the S3-25 and S4-0 layers at selected locations for the ease of extracting cores (Figure 3.13). Also, those selected locations were labeled after paving by using spray paint on the top of the S4-0 layer. After laydown, compaction was conducted using a vibratory compactor with steel drum (CAT PS-360B). As before, the rolling pattern was decided on the basis of density readings obtained from a nuclear density gage during trial rolling. Both density and temperature were recorded for each pass until the density started decreasing with the number of passes. It was found that approximately four passes are enough to achieve the desired level of compaction.

Figure 3.11 Laydown of S4-0 Layer (South Lane).

Figure 3.12 Laydown and Compaction of S4-0 Layer (South Lane).

Figure 3.13 Placement of Paper During Laydown of S4 Layers.

3.3.1.2 Construction of the North Lane (S3-40 and S4-10 mixes)

The North lane of the test section was constructed using the same equipment and procedure as outlined above for the South lane. This lane was constructed with a S3-40 mix overlaid by a S4-10 mix, and four passes were used to achieve the desired level of compaction for S3-40. The thickness of the first lift of S3-40 mix (Figure 3.14) was determined by taking three cores and measuring the thickness of each core. It was found that thicknesses of the cores are 3.1 in., 2.9 in. and 3.0 in., with an average thickness of 3 in. Henceforth, the same amount of mix (135 tons of material) was used to achieve the next 3 in. of the S3 layers. After the construction of the S3-40 layers, the S4-10 layer (Figure 3.15) was constructed. Five passes were used to achieve the desired level of compaction for this layer.

Figure 3.14 Laydown of S3-40 Layer (North Lane).

Figure 3.15 Laydown of S4-10 Layer Over S3-40 Layer (North Lane).

3.3.1.3 In-Situ Coring

The in situ coring was first performed on February 24, 2011, after the construction of the base layers and again on February 28, 2011, after the construction of the surface layers. A total of eighteen cores were extracted from the base layers, while fourteen cores were extracted from the surface layers. The location, the mix type and the thickness of all the cores are presented in Tables 3.1 and 3.2. The cores were extracted at a regular interval of fifty and seventy five feet from each other for the base and surface layers, respectively.

The core specimens were retrieved from both lanes between the expected wheel paths, as shown in Figure 3.16 and Figure 3.17. As shown in Figure 3.17, cores of same diameter (6 in. (152 mm)) were obtained. Each core was taken to full depth of the asphalt pavement layer. The average thicknesses of the cores were 6 in. (152 mm) and 3 in. (76.2 mm) for base and surface layers, respectively. After extraction, the cores were properly labeled and carefully wrapped so that they can be brought to the laboratory in good condition. After extraction, Silver Star Construction patched all the holes with HMA, followed by compaction with a plate compactor, as shown in Figures 3.18 and 3.19. The cores were cut in the laboratory to achive a diameter 6 in. and a height of 1.8 in., for testing.

Cores No	No Distance from west end (ft.) Mix Type		Thickness (in)	
1	50	S3-25	5.875	
2	100	S3-25	5.625	
3	150	S3-25	5.75	
4	200	S3-25	6.375	
5	250	S3-25	6.25	
6	300	S3-25	6.875	
7	350	S3-25	6.625	
8	400	S3-25	6.375	
9	450	S3-25	6.25	
10	50	S3-40	6.00	
11	100	S3-40	5.625	
12	150	S3-40	5.625	
13	200	S3-40	5.875	

Table 3.1Descriptions of Cores from S3 Layers

14	250	S3-40	5.625
15	300	S3-40	6.00
16	350	S3-40	6.50
17	400	S3-40	6.75
18	450	S3-40	6.00

Table 3.2Descriptions of Cores from S4 Layers

Cores Samples	Distance from	Mix Type	Thickness
No.	west end (ft.)		
1	75	S-4 Virgin	3.125
2	112	S-4 Virgin	3.25
3	171	S-4 Virgin	3.125
4	208.5	S-4 Virgin	3.25
5	325	S-4 Virgin	3.125
6	464	S-4 Virgin	3.125
7	595.6	S-4 Virgin	3.125
8	103	S-4-10%	2.5
9	191	S-4-10%	3.0
10	267	S-4-10%	3.125
11	387.5	S-4-10%	3.125
12	458.7	S-4-10%	3.25
13	522.6	S-4-10%	3.625

Figure 3.16 Coring Operation S3-25 (South Lane).

Figure 3.17 Core locations.

Figure 3.18 Patching Process of the Holes.

Figure 3.19 Plate Compaction During Patching Holes.

3.3.2 Test Sites for RAP2

The test sites of RAP2 were selected in cooperation with Schwartz Paving Co. in Oklahoma City, Oklahoma and are located on 178 Street North May in Oklahoma City (Figure 3.20) and South Czech Hall Road in Mustang, Oklahoma. Both of these test sites are city roads.

Figure 3.20 Test Site Located on 178 Street North May, Oklahoma City.

3.3.2.1 Construction of 178 Street and N. May, Oklahoma City

This test section was constructed with S3-25 and S3-40 mixes. Thirty bags (approximately 600 lbs.) of each mix were collected and transported to Broce asphalt laboratory for testing. The paving machine was equipped with an electronic slope and grade control (Figure 3.21). The S3 layers were constructed in two lifts, each having a thickness of 3 in. On January 4, 2012, the first lift of the S3 layer was constructed (Figure 3.22). After the laydown of the first lift, it was compacted by using a vibratory compactor with steel drum roller (HAMM HD-110 HV), as shown in Figure 3.23. The in situ coring was first performed on January 5, 2012, after the construction of the base layers (Figure 3.24). A total of eight cores were extracted from the base layers. The core specimens were retrieved from the test section between the expected wheel paths, as shown in Figure 3.25. As shown in Figure 3.26, cores of same diameter (6 in. (152) mm)) were obtained for rut testing. Each core was taken to full depth of the constructed pavement. The average thicknesses of the cores were 6 in. (152 mm). After extraction, the cores were properly labeled and carefully wrapped so that they can be brought to the laboratory in good condition. After extraction, Schwartz Paving Co. patched all the holes with HMA, followed by compaction with a plate compactor.

Figure 3.21 The Paving Machine Used for Test Site 2.

Figure 3.22 Construction of S3 Lift for Test Site 2.

Figure 3.23 Compaction of S3 Lift for Site 2.

Figure 3.24 Coring in Progress for Test Site 2.

Figure 3.25 Obtained Cores from S3 Layer for Test Site 2.

3.3.2.2 Construction of South Czech Hall Rd., Mustang (S4-25 mix)

This test section was constructed with a S4-25 mix. Thirty bags (approximately 600 lbs.) of loose mix were collected and transported to Broce asphalt laboratory for testing. Collection of core samples was not possible for this site due reasons beyond the control of the research team.

3.4 Rheological Evaluation of Binders

3.4.1 Superpave Tests

The extracted aggregates and recovered binders from RAPs, virgin binders, and virgin aggregates used in producing HMA mixes were evaluated in the laboratory. Superpave binder test protocols were followed to evaluate the performance of the binders. PG grades of the binders were evaluated as per AASHTO M 320. Short-term and long-term simulations of the binders were conducted by using a rotational thin film oven (RTFO) as per AASHTO T 240 and a pressure aging vessel (PAV) as per AASHTO R 28. High and low PG temperatures were estimated by using a dynamic

shear rheometer (DSR) as per AASHTO T 315 and a bending beam rheometer (BBR) in accordance with AASHTO T 313, respectively. Rotational viscosity (RV) values of the binders were estimated in accordance with AASHTO T 316.

3.4.2 Elemental Analysis

Elemental analyses of the base and blended (10%, 25% and 40% of RAP1 and RAP2 binder) binders were determined by Gailbraith Laboratories, Inc. (GLI). The C, H, and N measurements were made using a Thermo Finnigan FlashEA[™] 2000 Elemental Analyzer (GL, 2013a). The samples are burned in pure oxygen at 950°C under static conditions to produce as combustion products CO2, H2O, N2, and SO2. The FlashEA® 2000 separates the combustion gases by chromatography and measures the gases using a self-integrating steady state thermal conductivity analyzer.

Oxygen analysis is done using a Thermo Finnigan FlashEA[™] 1112 Elemental Analyzer (Oxygen Modification) (GL, 2013b) which pyrolyzes the sample in helium. During the pyrolysis, nitrogen, hydrogen, and carbon monoxide are formed when they contact a nickel plated carbon catalyst, at 1060°C. The carbon monoxide, hydrogen, and nitrogen are separated by chromatography and the carbon monoxide measured with a thermal conductivity analyzer to obtain the oxygen percentage.

3.5 Mechanistic Evaluation of Asphalt Mixes

3.5.1 Hamburg Wheel Track Test

For determining rut and moisture damage (stripping), cores were tested by using Hamburg wheel-tracking machine in accordance with the OHD L 55 test method (ODOT 2010). Susceptibilities to rutting and moisture are based on pass/fail criteria (Cooley, 2000). The test procedure requires that the cores be secured in mounting tray using plaster of Paris. During testing, the 47 mm (1.85 in) wide wheel is tracked across a sample submerged in water bath for 20,000 passes or until a rut depth of 20 mm occurs (Figure 3.26 (a)). The load on the wheel is 705 N (158 lb) (Figure 3.26 (b)). The average speed of each wheel is approximately 1.1 km/h (0.68 mph); each wheel travels approximately 230 mm (9.05 inch) before reversing direction, and the device operates at approximately 53±2 wheel passes/min. The temperature of water bath was

maintained at $50\pm1^{\circ}$ C (122 $\pm2^{\circ}$ F). Rut depths were measured continuously with a series of LVDTs. Figures 3.26 (c) and (d) show sample before and after testing.

(a)

(b)

Figure 3.26 (a) Hamburg Test Setup (b) During Testing with Loaded Wheels (c) Specimen Before Test (d) Specimen After Test.

The LVDT measures the depth of the rut with an accuracy of 0.01 mm (0.0004 inch). From a typical test curve, three characteristic regions are generally defined. The following features are noted: post-compaction consolidation, creep slope, stripping slope, and stripping inflection point (Lu and Harvey, 2006; Yildirim et al., 2007). Texas Department of Transportation (TxDOT) has adopted this test and recommended a maximum allowable rut depth of 12.5 mm at 20,000 passes for PG-76 or higher, at 15,000 passes for PG-70 and at 10,000 passes for PG-64 or lower (Yildirim et al. 2007).

It is worth mentioning that the Hamburg wheel-tracking machine has been found to have excellent correlations with field performance (Williams and Prowell, 1999; Izzo and Tahmoressi, 1999; Yildirim et al. 2007). So, it was decided to conduct this test on mixes as an additional performance indicator.

3.5.2 Fatigue Test

The fatigue resistance or number of cycles to fatigue is determined by testing beam specimens (length = 15.0 in., width = 2.5 in., thickness = 2.0 in.) using a four-point beam fatigue apparatus (Figure 3.27). Test samples are prepared in the laboratory at a target air void of 7±0.5%. This test is conducted in a strain-controlled mode at 20°C and at 10 Hz loading frequency, as recommended by AASHTO T321 (AASHTO, 2009). The strain level for testing was selected based on a number of preliminary tests on samples and was selected as 200 micro-strain. A 1100-lbf. (5 kN) load cell was used to apply cycles of loading and unloading in the four-point fatigue apparatus. A LVDT with a maximum stroke length of 0.04 in. (±1mm) and mounted on a target glued at the center of the beam was used to measure the vertical deformation. The initial stiffness was determined at the 50th load cycle. The total number of load repetitions that causes a 50% reduction in initial stiffness is considered fatigue life (AASHTO, 2009).

Figure 3.27 AMPT ATM-100 Used for Fatigue Tests.

3.5.3 Dynamic Modulus

The dynamic modulus (AASHTO TP 62) testing was conducted at following five different temperatures: $14^{\circ}F$, $40^{\circ}F$, $70^{\circ}F$, $100^{\circ}F$ and $130^{\circ}F$ (- $10.0^{\circ}C$, $4.4^{\circ}C$, $21.1^{\circ}C$, $37.8^{\circ}C$, $54^{\circ}C$) starting at the lowest temperature and proceeding to the highest temperature. For each temperature level, test was conducted at six different frequencies from the highest to lowest. The following frequencies were used: 25 Hz, 10 Hz, 5 Hz, 0.5 Hz, 0.1 Hz. Prior to testing, the sample was first conditioned by applying 200 cycles of load at a frequency of 25 Hz. The specimen was then placed in an environmental chamber and allowed to attain equilibrium at the specified test temperature (\pm 0.5). The magnitude of load was adjusted based on the material stiffness, air voids content, temperature, and frequency to keep the strain response within 50 - 150 microstrains (see Figure 3.28 (a) and (b)). The data were recorded for the last 5 cycles of each sequence.

Figure 3.28 (a) Equipment setup for dynamic modulus, (b) E* specimen inside the Environmental Chamber.

The master curves for each mix (S3-25, S3-40, S4-0, and S-10) were generated at a reference temperature of 70°F (21.1°C) using the procedure outlined in Bonaquist and Christensen (2005). Equations 3.1 and 3.2 show the sigmoid function and shift factor used for fitting and the master curve, respectively. The default values of ASTM 'A' (i.e., 10.980) and 'VTS' (i.e., -3.680) for a typical PG 64 - 22 binder were taken from the new MEPDG (AASHTO, 2004). A nonlinear optimization program was used to solve for these unknown parameters simultaneously.

$$\log(E^*) = \delta + \frac{\alpha}{1 + e^{\beta + \gamma \left\{ \log(\omega) + c \left[10^{A + VTS \log T_R - \log \eta 70RTFOT} \right] \right\}}}$$
(3.1)

The shift factor a(T) is given by:

$$a(T) = \frac{f_r}{f}$$
(3.2)

where,

E* = dynamic modulus,

a(T) = shift factor as a function of temperature and age,

 δ , β , α , and c = fitting parameters determined through numerical optimization of Equation 3.9,

 $\eta_{70RTFOT}$ = viscosity at reference temeperature of interest of 70°F (21°C) and under rolling thin-film oven aged condition,

 ω = loading frequency,

 f_r = reduced frequency at the reference temperature,

f = frequency at particular temeperature,

 T_R = temperature in Rankine,

A = regression intercept, and

VTS = regression slope of viscosity-temeperature susceptibility.

3.5.4 Creep Compliance Test

In AASHTO T 322, the creep compliance is defined as "the time-dependent strain divided by the applied stress." In this study, creep compliance tests were conducted at -0.4° F, 14° F, 32° F, and 50° F on cylindrical cores having a diameter of 6.0 in. and a height of 1.8 in., in accordance with the AASHTO T 322 test method. The test method consists of applying a static load of fixed magnitude along the diametral axis of the specimen for 100 seconds. A 22,000 lbs. load cell was used for loading the specimen. The vertical and horizontal deformations were measured by two LVDTs having a stroke length of 0.2 in., and attached in the diametrically perpendicular direction. A gauge length of approximately 1.5 in. was used for mounting the LVDTs on one face of the specimen were used for calculating the tensile creep compliance, as a function of time. The load level was selected to keep horizontal deformation in the linear viscoelastic range (0.000492 – 0.0007480 in.) during the creep test. Figures 3.29 (a) through (d) show the photographic view of the setup used for conducting creep test.

The creep compliance was calculated as a function of the horizontal and vertical deformations, the gauge length over which these deformations are measured, the dimensions of the test specimen, and the magnitude of the static load. The following steps are used in determining creep compliance, as defined in the AASHTO T 322 test method:

$$D(t) = \frac{\Delta X_{tm,t} D_{avg} b_{avg}}{P_{avg} GL} C_{cmpl}$$
(3.3)

where,

D(t) = creep compliance at time t (kPa)⁻¹,

GL = gauge length in inch (1.5 in., 38 mm),

D_{avg} = average diameter of the specimens,

b_{avg} = average thickness of all specimens,

 $\Delta X_{tm,t}$ = trimmed mean of the normalized, horizontal deformations (nearest to 0.001 in.) of all specimens faces of the specimen at time t,

 P_{avg} = average creep load (lb., kN), and

 C_{cmpl} = correction factor that can be defined as follows:

$$C_{cmpl} = 0.6354 \left(\frac{X}{Y}\right)^{-1} - 0.332$$
 (3.4)

where,

X/Y = absolute value of ratio of the normalized, trimmed mean of the horizontal deformations ($\Delta X_{tm,t}$) to the normalized, trimmed mean of the vertical deformations ($\Delta Y_{tm,t}$) at a time corresponding to ½ of the total creep compliance test time.

The range of the correction factor (Equation 3.4) is given by the following equation:

$$\left\lfloor 0.704 - 0.213 \left(\frac{b_{avg}}{D_{avg}} \right) \right\rfloor \le C_{cmpl} \le \left\lfloor 1.566 - 0.195 \left(\frac{b_{avg}}{D_{avg}} \right) \right\rfloor$$
(3.5)

The master creep compliance curve was created by using the time-temperature superposition principle. The time and temperature-dependent material properties can be represented by using reduced time (t_r) (Richardson and Lusher, 2008). The creep compliance versus time curves obtained from several individual temperatures was shifted along the time or frequency axis to create one continuous, creep compliance versus reduced time master curve. For a constant temperature, the reduced time (t_r) is defined as follows:

$$t_r = t \times a_t \tag{3.6}$$

where,

 a_t = time-temperature shift factor, and

t = time (seconds).

The Poisson's ratio, v, was calculated as follows:

$$\upsilon = -0.10 + 1.480 \left(\frac{X}{Y}\right)^2 - 0.778 \left(\frac{b_{avg}}{D_{avg}}\right)^2 \left(\frac{X}{Y}\right)^2$$
(3.7)

where,

 D_{avg} = average diameter of the specimens,

 b_{avg} = average thickness of all specimens, and $0.05 \le v \le 0.50$

Figure 3.29 (a) Brass Gauge Points on Creep Specimen, (b) LVDT Mounted Onto the Brass Gauge Points, (c) Equipment Setup for Both Creep Compliance and Dynamic Modulus Testing, (d) Creep Compliance Specimen Inside the Environment Chamber.

3.5.5 Indirect Tensile Strength Test

After the completion of the creep compliance testing at specified temperatures, the environmental chamber was then set at 14° F at which the tensile strength testing was performed. The portion of T 322 related to the tensile strength testing is destructive. The specimen was loaded until failure occurs and the specimen cannot be used again. The specimen temperature was stabilized first at the target temperature $14 \pm 32.9^{\circ}$ F

and then loaded at a rate (vertical movement) of 0.5 in. per minute. The tensile strength was calculated by using the following equation:

$$S_{t,m} = \frac{2xP_{f,n}}{\pi x b_n x D_n}$$
(3.8)

where,

 $S_{t,n}$ = tensile strength of the specimen, n, and

P_{f,n} = maximum load observed for specimen, n

4 ASPHALT BINDER TEST RESULTS

4.1 Performance Grading of Binders

Performance grade (PG) of the virgin binder with different percenatges (0%, 10%, 25%, 40%, and 100%) of RAP1 binder were determined as per AASHTO MP-1. To obtain the high PG temperatures of these binders, dynamic shear rheometer (DSR) tests on unaged and RTFO-aged binders were conducted as per AASHTO T 315. To evaluate the low PG temperatures of the blended binders, bending beam rheometer (BBR) tests on PAV-aged binder were conducted as per AASHTO T 313. As seen in Figure 4.1, the stiffness of the RAP1 binder is significantly higher than the virgin binder, as expected. The high and low PG temperatures are about five grades and two grades, respectively, higher than those in the virgin PG 64-22 binder. The stiffness of the belended binder increases with an increase of the percentage of the RAP1 binder (Table 4.1). With 10% RAP1 binder, there is no noticable change in the PG grade of the virgin binder. With 40% RAP1 binder, the high and low PG temperatures are about two grades and one grade, respectively, higher than those of the virgin binder. The PG grades of blended binders (blends of virgin binder and RAP binder) can be used as the MEPDG Level 3 input parameters.

Figure 4.1 Performace Grade of the RAP1 Blended Binders.

The recovered binder from RAP2 was blended with a virgin PG 64-22 binder at different proportions (10%, 25% and 40% recovered binder) and their PG grades were evaluated. As shown in Figure 4.2, virtually there was no change in the Superpave PG grade (6°C interval) due to the addition of 10% RAP binder. With 25% RAP binder, the PG grade has increased by one full grade (PG 70-16) at both ends. With further addition of RAP binder, the PG temperatures increases to some extent, however, the Superpave PG grade still remains as PG 70-16. The continuous PG grades of these binders are shown in Figure 4.2. It is noted that the PG temperature does not change significantly with the addition of 0.5% anti-stirpping agent.

Figure 4.2 Performance Grade of RAP2 Blended Binders.

4.2 Rotational Viscosity

Rotational viscosity test (AASHTO T 316) results of RAP2 blended binders are shown in Figure 4.3. As seen in Figure 4.3, the viscosity of RAP1 binder is about 8 times higher than that of the virgin PG 64-22 binder. This is due to the fact that the RAP1 binder experienced oxidative hardening throughout its service life. With the addition of RAP1 binder in the virgin binder the viscosity increases, which is expected. The viscosity values of virgin binder with 10%, 25%, and 40% RAP1 were about 1.1, 1.25, and 2.2 folds, respectively, compared to the virgin binder. Such observations are in agrrement with PG grades of blended binders discussed earlier.

Figure 4.3 Viscosity Test Results of the Blended Binders.

Rotational viscoisty data of the RAP2 blended binders under unaged conditon are shown in Figure 4.4. As illustrated in Figure 4.4, the viscosity of the RAP2 binder is about 530% higher than the virgin PG 64-22 binder. With addition of 10%, 25% and 40% RAP2 binder in the virgin binder, the viscosity vlaues were found to be about 10%, 44%, and 119% higher, respectively, compared to the virgin binder. The anti-stripping agent does not seem to have any significant effects on the viscosity of 25% RAP blended binder.

Figure 4.4 Rotational Viscosity Data of Blended Binders.

4.3 MEPDG Input Parameter for Binders with RAP

The MEPDG input parameters, dynamic moduls (G*) and phase angle (δ), of RTFO-aged blended binders (PG 64-22 with different percentages of RAP1 and RAP2) were evaluated by conducting DSR tests as per AASHTO T 315 over a range of temperatures (21.1°C, 29.4°C, 43.3°C, 46.1°C, and 54.4°C). Values of G* and δ of RAP1 blended binders are presented in Figures 4.5 and 4.6, respectively. As expected, the G* value decreases but the δ value increases with increase in testing temperature. Another trend is that the G* value increases and the δ values decreases with an increase of the percentage of the RAP1 binder except for 25% RAP1 at 21.1°C and 29.4°C. This is due to the fact that the RAP1 binder has experienced oxidative hardening throughut its service life. As mentioned in earlier secitons, RAP binders are significantly stiffer than their virgin counterparts. Thus, the higher the RAP2 blended binders and the MEPDG Level 1 input parameters for these binders are presented in Figures 4.7 and 4.8.

Figure 4.5 MEPDG Input Parameters (G*) of RAP1 Blended Binders.

In the case of 25% RAP1 at 21.1°C and 29.4°C, a slight decrease of the G* value and an increase of the δ value were observed, compared to 10% RAP1. Such observations are quite unexpected and uneplainable with limited laboratory data. It is suspected that some anomalies (e.g., sample triming, normal force, etc.) related to operator, machine, or combination of both factors played some roles behind such discrepencies in test result. It can also be mentioned that the MEPDG Level 1 input parameters for the 25% RAP blended binders modified with the anti-stripping agent was not possible to evaluate due to the limited amount of recovered binders. However, based on PG grade and viscosity measurements, it is expected that 0.5% anti-stripping agent will not have any significant effects on the MEPDG Level 1 input parameters of 25% RAP modified binders.

Figure 4.7 MEPDG Input Parameters (G*) of RAP2 Blended Binders.

Figure 4.8 MEPDG Input Parameters (δ values) for RAP2 Blended Binders.

4.4 Chemical Analyses

Chemical analyses (Tables 4.2 and 4.3) of RAP blended binders show that there is more oxygen content in RAP binder compared to the virgin binder. Also, it is evident that the content of oxygen increases with an increase in the amount of RAP binder. Furthermore, the content of oxygen increases with the level of aging (RTFO versus PAV aging of samples with 25% RAP binder), indicating increased oxidative hardening in the case of PAV-aged binders. It should be noted than the elemental analysis used in this study was not capable of detecting any compounds smaller than 0.5%. Also, only C, H, N and O were attempted to detect in this study.

 Table 4.1
 Chemical Compositions of RAP1 Blended Binders

Binder Type	C%	H%	N%	O%
VAL PG 64-22-Unaged	85.06	10.43	0.69	0.81
VAL PG 64-22+10%RAP1-Unaged	84.78	10.21	0.66	0.74
VAL PG 64-22+25%RAP1-Unaged	84.51	10.26	0.77	<0.50
VAL PG 64-22+40%RAP1-Unaged	84.13	10.09	<0.5	0.60
VAL PG 64-22+40%RAP1-RTFO	83.37	10	0.69	1.14
RAP1-Unaged	83.59	10	0.65	2.19

 Table 4.2
 Chemical Compositions of RAP2 Blended Binders

Binder Type	C%	H%	N%	O%
VAL PG 64-22-Unaged	84.82	10.65	0.98	0.62
VAL PG 64-22+10%RAP2-Unaged	84.12	10.53	<0.5	0.86
VAL PG 64-22+25%RAP2-Unaged	84.27	10.35	<0.5	1.07
VAL PG 64-22+25%RAP2-RTFO	83.58	10.26	<0.5	1.44
VAL PG 64-22+25%RAP2-PAV	83.82	10.35	<0.5	1.50
VAL PG 64-22+40%RAP2-Unaged	83.65	10.34	<0.5	3.04
RAP2-Unaged	82.33	9.96	<0.5	2.24

5. AGGREGATE PROPERTIES TEST RESULTS AND DISCUSSIONS

5.1 RAP1

5.1.1 Gradation

As noted earlier, bulk RAP1 materials were selected with the help of Silver Star Construction Co. in Moore, Oklahoma. The location of this RAP source was I-35 in McClain County (near Purcell), Oklahoma. The milling site consisted of a 1.5 in. (37 mm) overlay of HMA Type B with PMAC-1C binder. The overlay was constructed in 1994. Prior to 1994, the project received a 2 in. (50 mm) of leveling course of HMA Type C with AC-3 (viscosity grading) binder in 1979. In addition to collection of RAP, five different types of virgin aggregates, namely, #67 rocks, 5/8-in. chips, screenings, manufactured sand, and natural sand were collected for mix design and laboratory testing. The gradations of extracted and virgin aggregates were analyzed in accordance with AASHTO T 30 and AASTO T 27, respectively. Two samples were tested for each material and averaged for gradation. A summary of the gradation is presented in Table 5.1.

Sieve Size	#67 from Martin Marietta	5/8'' Chips from Hanson	Scrns. From Hanson	Manufac- tured Sand from Martin Marietta	Sand from GMI Sand OKC, OK 1402	Fine RAP from Contractor Site
1 in. (25 mm)	97	100	100	100	100	100
3/4 in. (19 mm)	88	100	100	100	100	97
1/2 in (12.5 mm)	59	96	100	100	100	90
3/8 in. (9.5 mm)	37	84	100	100	100	55
#4 (4.75 mm)	6	33	89	92	100	34
#8 (2.36 mm)	2	9	57	48	99	25
#16 (1.18 mm)	1	4	37	25	98	21
#30 (0.600 mm)	1	3	23	13	91	17
#50 (0.300 mm)	1	2	14	7	67	10
#100 (0.150 mm)	0	2	8	4	25	7
#200 (0.075 mm)	0.3	1.2	4.1	1.9	8.3	4.3

 Table 5.1
 Aggregates and RAP1 Gradations (Percent Passing)

5.1.2 Specific Gravity

The specific gravity of aggregates was expressed as a bulk specific gravity. In this study, the bulk specific gravity tests of coarse aggregate and fine aggregate were conducted following the AASHTO T 85 and T 84 test methods, respectively. The coarse aggregate portion was defined as the portion that retains on a No. 4 (4.75 mm) sieve. For both coarse and fine aggregate portions, the samples were tested in individual size fractions as well as for a specific mix gradation.

5.1.2.1 Coarse Aggregate Specific Gravity

The coarse aggregate was first thoroughly mixed and then reduced to the required size in accordance with the AASHTO T 248 test method. The set of apparatus used to conduct the coarse specific gravity in the Broce Laboratory is shown in Figure 5.1. The sample, under an oven-dry condition, was soaked for fifteen to nineteen hours, as per specifications. After the soaking period, it was removed from the soaking water and placed in the specified wire mesh basket. The basket and sample were placed in water and agitated to remove any trapped air from the sample. The mass in water was recorded on a data sheet. The sample was then removed from the water and placed on a towel. The aggregate was moved around on the towel until the film of water on the surface of the aggregate particles was no longer visible. Care was taken not to make the aggregate particles too dry. The sample was then weighed, and the mass was recorded as the saturated-surface-dry (SSD) weight. Lastly, the sample was placed in an oven until a constant mass was reached. The constant mass was recorded as the oven-dry weight. The three recorded masses namely, oven-dry test sample in air, SSD test sample in air, and saturated test sample in water were used to calculate the bulk specific gravity (SSD) using Equation 5.1 and the results are presented in Table 5.2:

$$G_{sb} = \frac{A}{B - C} \tag{5.1}$$

where,

G_{sb} = Bulk specific gravity,

A = Oven dry weight,

- B = SSD weight, and
- C = Weight in water.

Figure 5.1 Apparatus Used for determination of Specific Gravity of Coarse Aggregates.

5.1.2.2 Fine Aggregate Specific Gravity

The bulk specific gravity, apparent specific gravity and percent absorption of each fine aggregate sample were determined in accordance with the AASHTO T 84 test methods. Figure 5.2 presents the apparatus used to conduct the fine specific gravity test. The fine aggregate was first thoroughly mixed and then reduced to the required size in accordance with the AASHTO T 248 test method. The sample size for this procedure is approximately 2.2 lbs. (1,000 g) of material passing the No. 4 (4.75 mm) sieve. The test sample was dried to a constant weight in an oven set at 230 \pm 9°F (110 \pm 5°C), and then cooled at room temperature for one to three hours. Following the cooling period, the sample was soaked by maintaining it at a moisture content of at least 6% for a fifteen to nineteen-hour period. After the soaking period, the sample was spread on a flat non-absorbent surface, and dried to the Saturated Surface Dry (SSD) condition. The SSD condition is determined using a specified conical mold and a tamper. The material is placed in the cone, tamped twenty five times and the cone is

removed. If the material slumps, the SSD condition is reached, but if it does not slump, it is necessary to dry the sample further.

Figure 5.2 Apparatus Used for determination of Specific Gravity of Fine Aggregates.

After reaching the SSD condition, 1.1 ± 0.0022 lb (500 ± 1 g) of the sample is placed in a pycnometer charged with water. All air voids are removed by the hand agitation method and the pychnometer is filled with water to the calibration line and the mass is recorded. The material is then taken out and placed in an oven at a temperature of 230°F (110°C) for drying. The mass of the dry material is determined. The bulk specific gravity is then calculated using Equation 5.2 and the results are presented in Table 5.2.

$$G_{sb} = \frac{A}{B - S - C}$$
 (5.2) where,

G_{sb} = Bulk specific gravity,

A = Weight of oven dry sample,

B = Weight of flask filled with water to the calibration line,

C = Weight of flask, sample and water to the calibration line, and

S = Weight of SSD sample.

Source/Producer	Martin- Marietta (Davis, OK)	Hanson Aggregate	Hanson Aggregate	Martin- Marietta	GMI Sand OKC, OK 1402
Type of Aggregates	#67	5/8" Chips	Scrns.	Man. Sand	Sand (Unlisted Source)
Coarse Aggregates G _{sb}	2.665	2.671	2.677	2.640	-
Fine Aggregates G _{sb}	2.546	2.595	2.558	2.630	2.622

 Table 5.2
 Specific Gravity Values of Aggregates of RAP1 Mixes

5.1.3 L.A. Abrasion Test

The L.A. abrasion test was conducted on specific mixes with specific gradations in accordance with the ASTM C 131 test method. The L.A. abrasion test is most often used to evaluate the toughness and abrasion of the associated aggregates. The apparatus used to conduct the test is presented in Figure 5.3. When the L.A abrasion values are too high, excessive aggregate breakdown may occur during handling, compaction, and traffic, resulting in potential bleeding, rutting, or raveling (Wu et al., 1998). The gradation used in this study is the C gradation, in accordance with the criterion recommended in the ASTM C 131 test method.

Figure 5.3 Apparatus Used for L.A. abrasion Test.

The L.A. Abrasion test calls for 11 lbs (5000 gm) of aggregate test sample to be placed in a revolving drum along with a set number of steel balls averaging 1.84 in (46.8 mm) in diameter. The drum picks up and drops the sample and the balls 500 times by means of a shelf located inside the drum. The sample is then removed from the drum and sieved using a No. 12 (1.70 mm) sieve. The loss is calculated as the difference between initial mass and final mass. The loss is expressed to the nearest 1% of mass. The results are presented in Table 5.3 and Table 5.4. It is evident that all the mixes met the ODOT requirements for the L.A. abrasion loss (\leq 40 %). Regardless the mix type, the L.A. abrasion loss increases slightly with the increase in the RAP content. However, the percentage of RAP (up to 40% for S3 and 10% for S4) in the combined blend had a little effect on changes in the L.A. abrasion loss. The RAP aggregate may be beneficial since some of the rough, irregular edges would have been broken off during previous handling, placement and milling of materials (Han et al., 2011). In some cases, the proportion of RAP in the mixes actually improved the L.A. abrasion properties.

5.1.4 Micro-Deval

The Micro-Deval testing was conducted according to the ASTM D 7428 test method (Figure 5.4). The procedure consists of soaking a previously weighed 3.3 \pm 0.011 lbs. (1500 \pm 5 g) aggregate sample in two liters of water for one hour, and then placing the aggregate and the water in a small stainless steel drum with 11 lbs. (5000 g) of small steel balls with a diameter of 0.37 \pm 0.02 in. (9.5 \pm 0.5 mm). The drum is then sealed and rotated at 100 \pm 5 revolutions per minute for a specified amount of time depending on the gradation used. Afterwards, the aggregate sample is removed and wet sieved over the No. 4 (4.75 mm) and No. 16 (1.19 mm) sieves. The total amount of aggregate retained on both sieves is collected and oven-dried to a constant mass at 230 °F (110 °C), or usually overnight. The loss is determined by calculating the percent loss as retained on the No. 16 (1.19 mm) sieve. The results are presented in Table 5.3 and Table 5.4 for S3 and S4 mixes, respectively.

Figure 5.4 Apparatus Used for Micro-Deval Test.

5.1.5 Sand Equivalent Test

The sand equivalent test is a consensus aggregate property specified in the Superpave[®] mix-design method (Prowell et al., 2005). In this study, the test was conducted on specific mix gradation in accordance with the AASHTO T176 test method. Figures 5.5 shows the apparatus used for conducting this test. Fine aggregates (passing the No. 4 (4.75 mm) sieve) are placed in a graduated, transparent cylinder that is filled with a mixture of water and a flocculating agent. After agitation and 20-min. of settling, the sand separates from the clay-like fines and the heights of sand and sand plus clay are measured. The sand equivalent is the ratio of the height of the sand to the height of sand plus clay times 100. A higher sand equivalent values indicate more sand and less clay and silt. The results are presented in Tables 5.3 through 5.6.

Blended Material	S3-25	S3-40	Gradation (Sieve Size, mm)	% Passing for S3-25	% Passing for S3-40	Required ^a	
#67 Rock	15%	12%	25	100	100	100	
5/8" Chips	22%	25%	19	99	97	90-100	
Screenings	17%	8%	12.5	89	90	≤ 90	
Manufactured Sand	10%	15%	9.5	78	70	-	
Natural Sand	11%	0%	4.75	56	43	-	
Fine RAP	25%	40%	2.36	39	24	23-49	
			1.18	31	16	-	
			0.6	25	11	-	
			0.3	18	7	-	
			0.15	9.0	5	-	
			0.075	5.2	2.7	2-8	
^a Required for	0.3-3M of	Design	ESAL RAP Rec	vcled Aspha	It Pavement	S3-25 mix	

 Table 5.3
 Summary of Mix Gradation for S3-25 and S3-40 of RAP1 Mixes

^a Required for 0.3-3M of Design ESAL; RAP: Recycled Asphalt Pavement; S3-25: mix containing 25% RAP; S3-40: mix containing 40% RAP.

Table 5.4Summary of Aggregates Properties and Volumetric Properties of S3-
25 and S3-40 of RAP1 Mixes

Volumetric and Aggregate Properties	S3-25	S3-40	Required ^a				
G _{mm}	2.533	2.475	N/A				
G _{se}	2.722	2.665	N/A				
G _{sb}	2.671	2.628	N/A				
G _b	1.01	1.01	N/A				
Virgin Binder Type	PG 64-22	PG 64-22	N/A				
Total Binder Content (%)	4.4	4.7	N/A				
Virgin Binder Content (%)	2.9	2.9	N/A				
VMA (%) (Required: ≥ 13.0)	14.5	15.2	N/A				
VFA (%) (Required: 65-78)	67.2	73.6	N/A				
DP (Required: 0.6-1.2)	1.4	0.8	N/A				
LA Abrasion (%)	21	22	≤ 40				
Micro Deval (%)	11.8	12.5	≤ 25				
Sand Equivalent (%)	78	82	≥ 40				
Fine Aggregates Angularity (%)	43.5	42	≥ 40				
Tensile Strength Ratio	0.87	0.82	≥ 0.80				
APA Rut (mm)	1.1	3.6	≤ 6 mm				
Permeability (10 ⁻⁵ cm/s)	6.4	6.5	≤ 12.5				
C Maximum Theoretical Specific Crowity: C Effective Specific Crowity of Aggregates: C							

G_{mm}: Maximum Theoretical Specific Gravity; G_{se}: Effective Specific Gravity of Aggregates; G_{sb}: Bulk Specific Gravity of Aggregates; VMA: Void in Mineral Aggregates; VFA: Void Filled with Asphalt; DP: Dust Proportion; APA: Asphalt Pavement Analyzer

Blended Material	Blended Material S4-0 S4-10		d Material S4-0 S4-10 Gradation % (Sieve Size, Passing		% Passing	% Passing	Required ^a	
			mm)	10r 54-0	10/ 54-10			
5/8" Chips	25%	30%	19	100	100	90-100		
1/2" Chips	18%	0%	12.5	96	98	≤ 90		
Screenings	42%	22%	9.5	88	90	-		
Manufactured Sand	0%	33%	4.75	57	68	-		
Natural Sand	15%	5%	2.36	35	39	23-49		
Fine RAP	0%	10%	1.18	28	25	-		
			0.6	23	17	-		
			0.3	15	10	-		
			0.15	7	6	-		
			0.075	4.6	2.7	2-8		
^a Required for 0.3-3M of Design ESAL; RAP: Recycled Asphalt Pavement; S4-0: mix containing 0% RAP; S4-10: mix containing 10% RAP.								

Table 5.5Summary of Mix Gradation and Volumetric Properties for S4-0 and
S4-10 of RAP1 Mixes

Table 5.6	Summary of Aggregates and Volumetric Properties for S4-0 and S4-
	10 of RAP1 Mixes

Volumetric and Aggregate Properties	S3-25	S3-40	Required ^a
G _{mm}	2.488	2.470	N/A
G _{se}	2.699	2.687	N/A
G _{sb}	2.670	2.605	N/A
G _b	1.01	1.01	N/A
Virgin Binder Type	PG 64-22	PG 64-22	N/A
Total Binder Content (%)	5.1	5.3	N/A
Virgin Binder Content (%)	5.1	4.8	N/A
VMA (%) (Required: ≥ 13.0)	15.8	15.9	N/A
VFA (%) (Required: 65-78)	69.6	73.3	N/A
DP (Required: 0.6-1.2)	0.97	0.6	N/A
LA Abrasion (%)	18	21	≤ 40
Micro Deval (%)	7.7	11.8	≤ 25
Sand Equivalent (%)	67	75	≥ 40
Fine Aggregates Angularity (%)	42.7	41.6	≥ 40
Tensile Strength Ratio	0.85	0.82	≥ 0.80
APA Rut (mm)	1.39	4.2	≤ 6 mm
Permeability (10 ⁻⁵ cm/s)	3	10.4	≤ 12.5

Volumetric and Aggregate Properties	S3-25	S3-40	Required ^a		
G _{mm} : Maximum Theoretical Specific Gravity; G _{se} : Effective Specific Gravity of Aggregates; G _{sb} :					
Bulk Specific Gravity of Aggregates; VMA: Void in Mineral Aggregates; VFA: Void Filled with					
Asphalt; DP: Dust Proportion; APA: Asphalt Pavement Analyzer					
EAC Tetal Incelulus Deside	_				

5.1.6 Total Insoluble Residue

The acid insolubility of aggregate is an indicator of skid resistance of the pavement surface. The lower the acid insoluble residue, the lower the expected skid resistance of the pavement. The acid insoluble material in coarse aggregates was determined as per OHD L-25 (Method of Test for Total Insoluble Residue in Coarse Aggregate). The extracted aggregates were washed and those passing through a 1/2 inch (12.5 mm) sieve and retained on a No. 4 sieve were used to measure the insolubility in conc. hydrochloric acid (HCI).

Figure 5.5 Sand Equivalent Test Setup.

In this test, 400 ml of water was added to 0.44 lb (200 gm) of coarse aggregate, then approximately 30 ml of concentrated hydrochloric acid was added per 1 oz (30 gm) of coarse aggregate. The mixture was stirred over a period of days until all reaction ceased. Then the insoluble free of excess ions were washed by filling jar with tap water and allowing the material to settle for about 48 hours and pouring off the clean solution. Procedure was repeated three times. After the third wash cycle, the insoluble were washed into a shallow pan and were rolled between thumb and fore finger to crumble any friable particles. Then they were washed over a No. 200 sieve, dried at 212°-221° F (100°-105° C) and weighed. Insolubles retained on a No. 200 sieve were reported as a percent of total sample used. Insoluble Residue values of selected RAP1 and virgin samples are presented in Table 5.7.

Міх Туре	Aggregate Type	Average Insoluble Residue (%)	Standard Deviation (%)
RAP1	NCAT Oven Extracted	31.1	1.3
S4+0%RAP1	NCAT Oven Extracted	88.8	N/A

 Table 5.7
 Insoluble Residue Test Results of RAP1 Aggregates

5.2 RAP2

5.2.1 Gradation

As mentioned earlier, gradation or the particle size distribution of aggregates is one of the most important aggregate characteristics which highly affect the performance of asphalt mix as a pavement material. As noted previously, aggregates were extracted from the collected mixes and RAP samples and the binder content was determined by using a NCAT ignition oven, as per the AASHTO T 308 method (Standard Method of Test for Determining the Asphalt Binder Content of Hot Mix Asphalt by the Ignition Method). Representative samples of RAP2 were obtained as per AASHTO T 168 (Sampling of Bituminous Paving Mixtures). The moisture content of the representative sample was determined by oven drying it at 110°C until a constant mass was achieved. Based on the nominal maximum size (NMAS) of RAP2 (19 mm), a 2000-gm sample was used in each test according to the AASHTO T 308 test method.

The extracted aggregates were analyzed in accordance with the AASHTO T 30 method (Mechanical Analysis of Extracted Aggregate) for gradation by using a series of sieves, as given in the original mixes. Gradations of aggregates extracted from RAPs were then compared with their virgin counterparts. Three replicates of each sample were sieved to find the average gradation. Aggregate gradations according to the mix designs, for the three RAP2 mixes, S3+25%RAP2, S3+40%RAP2, and S4+25%RAP2, are shown later in Appendix A (Figures A.13 through A.15). It was observed that the aggregates extracted from RAP2 fall within the S4 mix definitions according to ODOT Standard Specifications (ODOT 2009).

5.2.2 Specific Gravity

As shown in Table 5.8, the bulk specific gravity (BSG) and effective specific gravity (ESG) values of S3+25%RAP2 were found to be 2.698 and 2.680, respectively. The BSG and ESG values of S3+40%RAP2 were found to be 2.704 and 2.655, respectively. The BSG and ESG values of S4+25%RAP2 were observed as 2.674 and 2.605, respectively.

5.2.3 Durability

The LA Abrasion loss values of S3+25%RAP2, S3+40%RAP2, and S4+25%RAP2 were found to be 23.0, 22.0, and 24.2, respectively, which were well below the ODOT maximum limit of 40. The Micro-Deval loss value of S3+40%RAP2 was found to be 16.2, which was also well below the ODOT maximum allowable limit of 25. It should be noted that Micro-Deval tests were not conducted for aggregates for S3+25%RAP2 and S4+25%RAP2 mixes.

5.2.4 Sand Equivalent

As explained earlier in this chapter, the sand equivalent test is a measure of the relative proportions of fine dust or clay-like materials in fine aggregate and is an indicator of the dust or clay content in fine aggregate. Sand equivalent tests of RAP2 aggregates were conducted in accordance with the AASHTO T 176 (Plastic Fines in

Graded Aggregates and Soils by Use of the Sand Equivalent Test) standard test method. In regard to RAP2 mixes, sand equivalent tests were conducted on three types of aggregates: (1) NCAT oven extracted aggregates from field mixes: S3+25% RAP2, S3+40%RAP2 and S4+25% RAP2, (2) NCAT oven extracted aggregates from RAP2, and (3) Blended virgin aggregates according to the mix designs of field collected mixes.

The sand equivalent values obtained from Items 2 and 3 are mathematically combined to obtain the virgin sand equivalent value of each mix. This will help observe the effect of extraction of aggregates using the NCAT ignition oven on the sand equivalent value. Sand equivalent values obtained for different aggregates in this study are shown in Table 5.8. It should be noted that the sand equivalent values for virgin blended aggregates are the combination of the sand equivalent values of the virgin portion of the mix and the extracted aggregates from RAP2. It was observed that the sand equivalent values of all aggregates met the ODOT criterion (sand equivalent value >40%) for the construction of high volume roads (\geq 3M+ equivalent single axle load). However, this observation should be used cautiously as the excessive heat in the NCAT ignition oven may alter the sand equivalent values of RAP aggregates (Hossain et al., 2012). According to Table 5.8, this difference was no more than 4%.

Міх Туре	Aggregate Type	Average Sand Equivalent (%)	Standard Deviation (%)
RAP2	NCAT Oven Extracted	70	1.33
\$3±25% DAD2	NCAT Oven Extracted	80	2.12
33723 /0RAF2	Virgin Blend	Average Sand Equivalent (%) Standa Deviation 70 1.33 80 2.12 82 2.10 84 0.98 88 1.20 81 3.51 79 1.11	2.10
S3+40% DAD3	NCAT Oven Extracted	84	0.98
33740 /0RAFZ	Virgin Blend	88	1.20
S4+25% DAD2	NCAT Oven Extracted	81	3.51
34723 %RAFZ	Virgin Blend	Sand Equivalent (%) Stan Deviati 70 1.3 80 2.3 82 2.3 84 0.9 88 1.3 81 3.5 79 1.3	1.11

 Table 5.8
 Sand Equivalent Test Results on Aggregates

5.2.5 Insoluble Residue

Table 5.9 presents the average and standard deviation values derived from insoluble residue test results on three insoluble test trials of the NCAT oven extracted RAP2 aggregates and virgin blended and NCAT oven extracted aggregates from

S3+25%RAP2, S3+40%RAP2 and S4+25%RAP2 mixes. According to Table 5.9, the hydrochloric acid (HCI) insolubility of RAP2 aggregates was found to be 16.3 even though the original pavement was constructed as an insoluble mix with a required acid insolubility of greater than 40. Thus, RAP2 aggregates do not meet the ODOT solubility requirement anymore. Possible reasons for the loss in the percent insoluble residue could be degradation of particles under heavy traffic (3M+ equivalent axle load) and weathering actions. To verify the possible effect of the NCAT ignition oven on the acid insolubility of extracted aggregates, S3 and S4 NCAT oven extracted aggregate and their virgin counterparts were also tested and they were found to be extremely low (below 7.0), which were also in agreement with insoluble residue data available in ODOT Materials Division's database (ODOT 2010). A possible reason for virgin aggregates having extremely low insoluble residue was the source of aggregates. Currently aggregates in the quarry appear to be limestone. Limestone, which is composed largely of calcite (CaCO₃), is expected to react well with HCl. However, sandstone, which is primarily composed of guartz and/or feldspar, is not expected to react with HCI. Therefore, concentrated HCI acid used in the insoluble residue test was more reactive with carbonates in the limestone aggregates compared to sandstones. These findings reiterate the need for the evaluation of acid insoluble residue of RAP aggregates intended to be used in new mixes. It is very unlikely that the NCAT ignition oven processes change the fundamental mineralogy (chemicals composition) of aggregates, reflecting that the percent residue should not change. This was observed in Table 5.9, whereas NCAT extracted aggregates have a very similar insoluble residue values to their virgin counterparts.

Mix Type	Aggregate Type	Average Insoluble Residue (%)	Standard Deviation (%)
RAP2	NCAT Oven Extracted	16.3	1.9
S3+25%RAP2	NCAT Oven Extracted	6.3	2.0
	Virgin Blend	3.6	1.7
S21400/ DAD2	NCAT Oven Extracted	5.1	2.1
33740 /0RAFZ	Virgin Blend	3.1	1.8

 Table 5.9
 Insoluble Residue Results for Site 2 Aggregates

Mix Type	Mix Type Aggregate Type		Standard Deviation (%)
S1+250/ DAD2	NCAT Oven Extracted	7.0	1.9
54+25%RAP2	Virgin Blend	5.8	1.1

5.3 Summary

As discussed in Sections 5.2.1 to 5.2.4, testing on the aggregates extracted from mixes (S3-25% RAP2, S3-40% RAP2 and S4-25% RAP2) and those from the virgin blends of aggregates, the following summary can be concluded:

- Based on the L.A. abrasion loss values and the Micro Deval loss values, it can be observed that all of the mixes (including RAP2) meet the aggregate soundness requirements set by ODOT. However, NCAT oven extracted aggregates show more L.A. abrasion loss values and Micro Deval loss values, compared to their virgin counterparts.
- Sand equivalent tests show that the NCAT oven extraction process of S3 mixes (with 25% and 40% RAP) results in an increase in sand equivalent values. Similar observation has been made for the S4 mix with 25% RAP2.
- Insoluble test results indicate that RAP2 aggregates do not meet the ODOT solubility requirement. Also, S3 and S4 NCAT oven extracted aggregates and their virgin counterparts were tested and their corresponding insoluble values were found to be extremely low (below 7.0). This was in agreement with insoluble residue data available in the ODOT Materials Division's database.

6. MIX TEST RESULTS AND DISCUSSIONS

Test results of volumetric mix designs of RAP1 and RAP2 mixes and relevant discussions are presented in the subsequent sections of this chapter.

6.1 RAP1

6.1.1 Volumetric Properties

The collected RAP millings were used for volumetric mix designs in accordance with the AASHTO M 323 test method. As discussed in Chapter 5, a total of four mix designs, namely, S3-25, S3-40, S4-0, and S4-10 were developed. A total of four and three mix trials were used for developing the volumetric mix designs for the S3-40 and S4-10 mixes, respectively. The mix designs for the S3-25 and S4-0 mixes were provided by Silver Star Construction Co. The trial designs prepared for the S3-40 and S4-10 mixes are presented in Appendix A (Figures A.1 through A.11). The procedure consisted of mixing different percentages of virgin aggregates, virgin binder, and RAP satisfying the gradation requirements. The prepared asphalt mix was then conditioned and used to prepare cylindrical samples in a Superpave[®] Gyratory Compactor (SGC) in accordance with the AASHTO T 312 test method. The final trials were found to satisfy the volumetric mix design requirements for the S3-40 and S4-10 mixes. The mixes were designed for an equivalent single axle load (ESAL) level of 0.3M – 3M. The S3-40 mix is a blend of aggregates containing 12%, 25%, 8%, and 15% of #67 rocks, 5/8-in chips, screening, and manufactured sand, respectively. The gradation of this blend is well within the minimum and maximum limits of the ODOT requirements for S3 mixes. Similarly, the S4-10 mix is a blend of 30%, 22%, 30%, and 8% of 5/8-in chips, screening, manufactured sand and natural sand, respectively, which are well within the limits of the ODOT requirements for S4 mixes.

6.1.2 Mix Performance

6.1.2.1 Rut and Moisture Resistance

The test results for S3 and S4 mixes tested at different air void contents are presented in Figures 6.1 and 6.2, respectively. It is evident from Figure 6.1 that the rut depth of S3-25 mix is higher than the rut depth of S3-40 mix. For example, at 10,000

passes S3-25 (air void content = 7.1%) and S3-40 (air void content = 7.1%) mixes showed a rut depth of approximately 4.95 and 3.72 mm, respectively. The behavior of rut with increase in RAP content in S4 mixes is not very clear due to significant difference in air void content of S4-0 (average air void content = 4.1%) and S4-10 (average air voids content = 8.4%) mixes. For example, the S4-10 mix with an air voids content of 7.8% showed lower rut values as compared to the S4-0 mix having an air voids content of 4.6%. On the other hand, the same S4-10 mix (air voids content = 7.8%) showed higher rut values as compared to S4-0 mix with an air voids content of 3.6% (Figure 6.2). It is important to note that both specimens from the S4-0 mix had significant lower air voids content (4.1%). Thus, lower rut values were expected in the case of S4-0 mix specimens (Hossain et al. 2010).

For further evaluation of moisture susceptibility of mixes, the average rut values for each mix were calculated and plotted in Figure 6.3. As presented in Figure 6.3, all four characteristic regions are evident in S3-25 and S4-0 mixes. The stripping inflection points for S3-25, S4-0 and S4-10 mixes were found to be approximately 17,000, 15,700 and 15,000 passes, respectively. According to FHWA (2012), an inflection point below

10,000 wheel passes indicates significant moisture damage susceptibility of the mix. No stripping slope and inflection point were observed in S3-40 mix.

Figure 6.2 Hamburg Curves of S4 Mixes with RAP1.

Figure 6.3 Average Hamburg Curves of S3 and S4 Mixes with RAP1.

6.1.2.2 Fatigue Life

Fatigue cracking as a result of repetitive stress and strain caused by traffic and environmental effects is considered a primary distress mechanism in asphalt pavements. Therefore, fatigue performance of the asphalt pavement is an important design parameter. Although existing design standards aim to ensure the quality of the HMA, the fatigue performance of HMA mixes containing RAP is not well understood. The mix design procedure currently used in Oklahoma is primarily intended to eliminate mixes that might be susceptible to rutting and moisture damage and fatigue performance is not directly evaluated in the mix design process. The fatigue life of an asphalt mix is its ability to withstand the repeated traffic loads without failure. Fatigue cracking becomes more important when RAP materials are used in producing HMA mixes. Historically it is believed that the use of RAP which contains aged binder will result in a brittle mix and therefore it is expected to be more prone to fatigue cracking. Therefore, the primary purpose of conducting fatigue tests in this project was to evaluate the effects of RAP content and gradation on the fatigue life of the HMA.

Four point beam fatigue tests (FTG) were conducted in OU Broce Asphalt Laboratory using a newly purchased high end Asphalt Mix Performance Tester (AMPT). This test was used as a valuable tool for accelerated laboratory testing of asphalt mixes for fatigue life under controlled-strain conditions. In this study, FTG tests were conducted according to the AASHTO T 321 test method, on two types of asphalt mixes: laboratory compacted and field compacted, asphalt beam samples. The slab samples collected from the field (from RAP 1 Site) were transported to the Broce Asphalt Laboratory and were cut to the desired beam size in accordance with the size requirements indicated in the AASHTO T321 test method. Collection of the slab samples from RAP 2 Site was found not to be feasible. Hence, the asphalt mixes collected from the RAP 2 Site was used for compaction of the slabs, using a linear kneading compactor. Compacted slabs were then cut to the desired sizes to obtain beam samples. FTG tests were conducted under a constant strain mode on the beam

samples. Flexural stiffness was measured at the beginning of the test (average stiffness from the first 50 cycles) and the stiffness decay at 50% of initial stiffness was targeted as the test termination criterion. The number of cycles giving 50% of initial stiffness was reported as the fatigue failure cycle.

Table 6.1 shows the FTG test results, conducted on the asphalt beam samples from the RAP 1 Site. As indicated in Table 6.1, the tests were conducted at a temperature of 20°C and at a constant frequency of 10 Hz. All the tests were conducted under a constant strain level of 300 micro strains. However, the FTG tests on the S3-40% RAP 1 mix was conducted at 200 micro strains, due to the limitations in the number of available samples. From Table 6.1, it is evident that S4-10% RAP 1 mix showed a higher average fatigue life (367,095 cycles, approximately 32%) compared to that of the S4-10% RAP 1 mix (279,071 cycles).

While interpreting the FTG results, the difference in air voids between these two mixes should also be taken into account. The beam samples prepared from the S4-0% RAP 1 mix have an average air voids of 3.8%. The corresponding air voids for beam samples prepared from the S4-10% RAP 1 mix was much higher (7.1%). Therefore, an improvement in the fatigue life is expected with the addition of 10% RAP 1 to the S4-0 mix if the samples have similar air voids.

Mix	Sample	Air	Strain	Т	f	Initial	AASHTO	Average	COV
Туре	No.	Voids	Level	(°C)	(Hz)	Stiffness	- Failure	Failure	(%)
		(%)	(µe)			(MPa)	Cycles	Cycles	
							@50%	@50%	
							Initial	Initial	
								Stiffness	
S4-	S4-0-2-2	3.8	300	20	10	5486	261,705		
0%	S4-0-4-1	3.8	300	20	10	5875	308,888	279,071	9.3
RAP1	S4-0-4-2	3.7	300	20	10	5826	266,620		
S4-	S4-10-6-2	7.6	300	20	10	4549	375,910		
10%	S4-10-7-1	7.0	300	20	10	4272	281,200	367,095	22.3
RAP1	S4-10-7-2	6.8	300	20	10	3872	444,175		
S3-	S lab 2-1	7.7	300	20	10	4971	700,000		
25%	S lab 2-2	6.2	300	20	10	5557	1,000,00	850,000	25.0
RAP1							0		

 Table 6.1
 Fatigue Test Results Conducted on the Asphalt Mixes with RAP1

Mix Type	Sample No.	Air Voids (%)	Strain Level (µe)	Т (°С)	f (Hz)	Initial Stiffness (MPa)	AASHTO - Failure Cycles @50% Initial	Average Failure Cycles @50% Initial Stiffness	COV (%)
S3- 40%	S lab 1-1	6.1	200	20	10	8110	2,500,00 0		
RAP1	S lab 1-2	6.3	200	20	10	7324	1,700,00 0	2,433,333	28.9
	S lab 2-1	6.8	200	20	10	7951	3,100,00 0		

From Table 6.1, it is evident that due to the difference in the FTG testing strain levels between S3-25% RAP 1 and S3-40% RAP 1, no solid conclusions can be made on the effect of using RAP 1 on the fatigue life of S3 mixes. But, it was observed that S3-25% RAP 1 showed even a better fatigue performance (132% higher) compared to that of S4-10% RAP 1. Also, coefficients of variation (COV) of fatigue failure cycles for each mix type are shown in Table 6.1. It was observed that COV varies between 9.3% for S4-0% RAP 1 to 28.9% for S3-40% RAP 1 mix, which is well within the range of observation made by other researchers. Thus, it can be concluded that addition of RAP 1 to the mix has a favorable effect on fatigue life of the tested asphalt mixes from RAP 1 Site.

6.1.3 MEPDG Inputs

6.1.3.1 Dynamic Modulus

Table 6.2 summarizes air voids, bulk specific gravity (G_{mb}), maximum specific gravity (G_{mm}) and asphalt content for each E* test specimen. As shown in Table 6.1, two specimens were tested and averaged for each mix. It should also be noted that the air voids of all the specimens were in the range of 7% ± 0.5%, in accordance with the AASHTO TP 62 test method for dynamic modulus. The dynamic modulus values are presented in Tables 6.3 and 6.4. A statistical t-test was conducted on the results of the replicate specimens from each mix to determine the difference between the replicates. The results of the t-test show that there are no significant differences between the

replicate specimens (t-test \geq 0.05). Plots generated from the dynamic modulus test results are presented in Figures 6.4 through 6.7.

It is evident from Table 6.3 (also from Figures 6.4 and 6.5) and Table 6.4 (also from Figures 6.6 and 6.7) that the dynamic modulus increases as the loading frequency increases, while it decreases as the testing temperature increases. For example, for the S3-25 mix, the dynamic modulus (E*) values increase from 1002 psi (at 0.1 Hz) to 1860 psi (at 25 Hz) at a temperature of 40 °F, while it decreases from 2368 psi (at -0.4 °F) to 153 psi (at 130°F) at a constant frequency of 25Hz. This behavior is consistent with the observations made by Flintsch et al. (2008).

L									
Mix Type	Specimen Number	Air Void (%)	G _{mm}	\mathbf{G}_{mb}	Asphalt Content (%)				
62.25	#1	7.329	2 546	2.359	4.4				
53-25	#2	7.091	2.540	2.365	4.4				
S2 40	#1 6.878 2.525		2.377	17					
33-40	#2	7.147	2.000	2.354	4.7				
S4 0	#1	6.742	2 406	2.328	5 1				
54-0	#2	6.627	2.490	2.331	0.1				
<u>84 10</u>	#1	6.772	2 409	2.329	5.2				
34-10	#2	6.976	2.490	2.324	0.0				

Table 6.2Summary of Volumetric Characteristics of Specimens Tested for
Dynamic Modulus with RAP1 at Project on York Drive

Figure 6.4 Plot of Average Dynamic Moduli for S3-25 Mix with RAP1.

Temp. (°F)	Freq. (Hz)	S3-25 Sample #1 (ksi)	S3-25 Sample #2 (ksi)	S3-25 Average (ksi)	S3-40 Sample #1 (ksi)	S3-40 Sample #2 (ksi)	S3-40 Average (ksi)
	25	2368	3756	3062	5504	5512	5508
	10	2125	3578	2852	5337	5297	5317
14	5	2223	2938	2580.5	5049	5077	5063
14	1	2009	2456	2233	4543	4614	4579
	0.5	1915	2098	2007	4748	4242	4495
	0.1	1730	1770	1750	3657	3631	3644
	25	1860	3559	2710	3429	3632	3531
	10	1721	3370	2546	3181	3475	3328
40	5	1819	3271	2545	2952	3193	3073
40	1	1522	2614	2068	2741	2624	2683
	0.5	1379	2544	1962	2337	2439	2388
	0.1	1002	1888	1445	1921	1664	1793
	25	1284	1662	1473	1744	2027	1885.5
	10	1158	1451	1305	1652	1592	1622
70	5	1082	1177	1130	1527	1446	1487
70	1	735	747	741	1098	1080	1089
	0.5	632	616	624	850	943	897
	0.1	361	321	341	464	492	478
	25	532	496	514	647	428	538
	10	445	449	447	581	331	456
100	5	371	374	373	476	279	378
100	1	236	227	232	301	165	233
	0.5	182	181	182	232	129	181
	0.1	105	108	107	143	85	114
	25	153	160	157	190	191	191
	10	125	134	130	139	149	144
130	5	101	99	100	114	114	114
	1	65	62	64	73	73	73
	0.5	56	54	55	59	68	64
	0.1	50	44	47	52	51	52
t-test R	esults	0.130 (S3-25	; Samples		0.961 (S3-40	; Samples	
Between ⁻	Two Sets	#1 and	#2)		#1 and	#2)	

Table 6.3 Dynamic Moduli of S3-25 and S3-40 Mixes with RAP1

Temp. (°F)	Freq. (Hz)	S4-0 Sample #1 (ksi)	S4-0 Sampl e #2 (ksi)	S4-0 Average (ksi)	S4-10 Sampl e #1 (ksi)	S4-10 Sample #2 (ksi)	S4-10 Average (ksi)
	25	3902	2972	3437	4323	4303	4313
	10	3721	2939	3330	4260	4236	4248
11	5	3713	2870	3292	4002	4026	4014
14	1	3117	2581	2849	3957	3956	3957
	0.5	2998	2469	2734	3858	3864	3861
	0.1	3247	2059	2653	3718	3785	3751.5
	25	1611	2143	1877	2882	2661	2772
	10	1587	2040	1814	2707	2565	2636
40	5	1443	1959	1701	2455	2535	2495
40	1	1199	1533	1366	2084	2054	2069
	0.5	1052	1369	1211	1908	1754	1831
	0.1	675	908	792	1346	1332	1339
	25	818	930	874	1213	1331	1272
	10	716	897	807	1098	1101	1099.5
70	5	617	710	664	1030	1122	1076
70	1	424	493	459	668	664	666
	0.5	328	395	362	577	489	533
	0.1	188	216	202	326	294	310
	25	255	268	262	418	424	421
	10	203	221	212	328	355	341.5
100	5	154	176	165	265	296	281
100	1	88	101	95	153	174	163.5
	0.5	66	83	75	122	136	129
	0.1	47	56	52	84	94	89
	25	57	84	71	156	133	145
	10	47	64	56	125	101	113
130	5	35	50	43	111	87	99
	1	24	34	29	70	56	63
	0.5	15	28	22	56	47	52
	0.1	17	24	21	37	39	38
t-test Results I Se	Between Two ts	0.854 (Samples #2	(S4-0; #1 and 2)		0.978 Sample #	(S4-10; s #1 and 2)	

 Table 6.4
 Dynamic Moduli of S4-0 and S4-10 Mixes with RAP1

Figure 6.5 Plot of Average Dynamic Moduli for S3-40 Mix with RAP1.

Figure 6.6 Plot of Average Dynamic Moduli for S4-0 Mix with RAP1.

Figure 6.7 Plot of Average Dynamic Moduli for S4-10 Mix with RAP1.

The master curves for dynamic modulus were developed based upon the procedure described in Chapter 3. The master curves for S3 mixes (S3-25 and S3-40) and S4 mixes (S4-0 and S4-10) are plotted in Figures 6.8 and 6.9, respectively. From Figure 6.8, it is generally evident that the dynamic modulus of the mix containing 40% RAP (S3-40) is higher than that of the mix containing 25% RAP (S3-25). For example, the S3-40 mix produced dynamic modulus values approximately 35%, 40% and 65% higher at a reduced frequency of 10⁻⁷, 1 and 10⁷ Hz, respectively, as compared to the corresponding S3-25 mix. This same trend is also evident in Figure 6.9, where the dynamic modulus of the mix containing 10% RAP (S4-10) is found to be higher than that of the mix containing 0% RAP (S4-0). For example, the S4-10 mix produced dynamic modulus values approximately 40%, 35% and 42% higher at a reduced frequency of 10⁻⁷, 1 and 10⁷ Hz, respectively, as compared to the S4-0 mix. These observations are in agreement with previous results reported by other researchers (e.g., Stroup-Gardiner and Wagner, 1999; Li et al., 2008; McGraw et al., 2010). The master curves represent the stiffness of the material for a wide range of loading frequencies (or loading times, equivalently). The master curve of the dynamic modulus as a function of time (or frequency) describes the time (or loading rate) dependency of the material. The amount

of shifting at each temperature, required to form the master curve, depicts the temperature dependency of the HMA.

Figure 6.8 Comparison of Dynamic Moduli for S3-25 and S3-40 Mixes with RAP1.

Figure 6.9 Comparison of Dynamic Moduli for S4-0 and S-10 Mixes with RAP1.

The log of shift factors used for developing the master curves of S3 mixes (S3-25 and S3-40) and S4 mixes (S4-0 and S4-10) are presented in Figures 6.10 and 6.11, respectively. It is clear from Figures 6.10 and 6.11 that S3-25 and S3-40 mixes had similar magnitude (\pm 0.1) of shift factors up to the reference temperature (21.1°C). Above this reference temperature, the S3-40 mix exhibited a higher magnitude of shift factor as compared to the S3-25 mix at a comparable temperature. Below the reference temperature, the shift factors for S4 mixes exhibited a higher magnitude of shift for mixes with lower percentage of RAP (S4-0) (Figure 6.11). However, the shift factors of S4 mixes did not follow any particular trend above the reference temperature. Some researchers have reported that the differences between the modulus values due to RAP are more pronounced at higher temperature or lower frequencies (e.g., Li et al., 2008).

Figure 6.10 Comparison of Shift Factor Used for Generating Master Curves for S3-25 and S3-40 mixes with RAP1.

Figure 6.11 Comparison of Shift Factor Used for Generating the Master Curves for S4-0 and S4-10 Mixes with RAP1.

6.1.3.2 Creep Compliance

As noted earlier, the creep compliance test has been adopted in the M-EPDG to describe the mechanical behavior of HMA at low-temperature. It is the primary input for predicting thermal cracking in asphalt pavements over their service lives. In order to achieve the Level 1 M-EPDG design, creep compliance tests were conducted at -0.4° F, 14°F, 32°F, and 50°F (-18° C, -10° C, 0°C, and 10°C) on cylindrical cores having a diameter of 6.0 in. (150 mm) and a height of 1.8 in. (45 mm), in accordance with the AASHTO T 322 test method. The cylindrical cores used for the creep compliance were sawed from the cores extracted from the test site, as described in Chapter 3. Table 6.5 summarizes air voids, bulk specific gravity (G_{mb}), and maximum specific gravity of each creep compliance test specimen. As shown in Table 6.5, two replicates were tested for each mix. The creep compliance values at different loading times (i.e., 2 s, 5 s, 10 s, 20 s, 50 s, and 100 s) are presented in Table 6.6 through Table 6.9. A statistical t-test was conducted on the results of the two duplicate specimens of each mix to determine the difference between the replicates. The results from the t-test show that there is no

significant difference between duplicate specimens (t-test ≥ 0.05), except for the S3-40 mix at -0.4°F (-18°C). The low level of confidence observed within the duplicate specimens of the S3-40 mix could be partly attributed to the relatively small deflections (4.84 x10⁻⁷ in. to 9.03x10⁻⁷ in.) at -0.4°F (-18°C). Plots generated for the creep compliance test results are presented in Figures 6.12 through 6.17.

Mix Type	RAP Cont. (%)	Sample Number	Air voids (%)	G _{mb}	G _{mm}
S3	25	#1	5.56	2.416	
S4	25	#2	5.48	2.345	2.546
S4	40	#1	5.67	2.403	0 5 2 5
S4	40	#2	6.01	2.394	2.555
S4	0	#1	5.95	2.35	
S4	0	#2	6.48	2.323	2.496
S4	10	#1	6.51	2.325	2 409
S4	10	#2	6.47	2.327	2.490

 Table 6.5
 Air Voids, G_{mb}, and G_{mm} of Specimens Tested for Creep Compliance of Project on York Drive

Table 6.6 Creep Compliance (D(t) in 1/psi) values for S3-25 Mix with RAP1

Time (Sec)	D(t) at T = -0.4°F;	D(t) at T = -0.4°F;	D(t) at T = 14°F;	D(t) at T = 14°F;	D(t) at T = 32°F;	D(t) at T = 32°F;	D(t) at T = 50°F;	D(t) at T = 50°F;
	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
2	4.84E-07	6.46E-07	5.89E-07	6.77E-07	9.19E-07	8.00E-07	2.34E-06	1.86E-06
5	5.40E-07	6.36E-07	6.03E-07	6.77E-07	1.03E-06	9.70E-07	3.09E-06	2.33E-06
10	5.51E-07	7.37E-07	6.87E-07	7.69E-07	1.19E-06	1.13E-06	3.92E-06	3.21E-06
20	5.73E-07	7.57E-07	8.00E-07	9.26E-07	1.38E-06	1.38E-06	4.91E-06	4.31E-06
50	6.28E-07	8.17E-07	8.54E-07	9.91E-07	1.92E-06	1.86E-06	6.95E-06	6.58E-06
100	6.95E-07	9.38E-07	1.06E-06	1.18E-06	2.41E-06	2.36E-06	9.35E-06	9.02E-06
Avg.	5.78E-07	7.55E-07	7.66E-07	8.70E-07	1.48E-06	1.42E-06	5.09E-06	4.55E-06
Stdev	7.38E-08	1.13E-07	1.80E-07	1.99E-07	5.77E-07	5.93E-07	2.63E-06	2.76E-06
	0.08 (T=0.4°	F; Sample	0.37 (T	=14°F; 0.87 (T=		=32°F;	0.74 (T	=50°F;
t-test	#1 and	l #2)	Sample #	1 and #2)	Sample #	1 and #2)	Sample #	1 and #2)

Time (Sec)	D(t) at T = -0.4°F;	D(t) at T = -0.4°F;	D(t) at T = 14°F;	D(t) at T = 14°F;	D(t) at T = 32°F;	D(t) at T = 32°F;	D(t) at T = 50°F;	D(t) at T = 50°F;
	Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2
2	6.64E-07	4.00E-07	6.40E-07	4.82E-07	9.26E-07	9.71E-07	1.81E-06	1.37E-06
5	7.04E-07	4.41E-07	7.28E-07	5.70E-07	1.14E-06	1.01E-06	2.33E-06	2.33E-06
10	6.95E-07	4.54E-07	7.72E-07	6.09E-07	1.26E-06	1.15E-06	2.93E-06	2.44E-06
20	7.83E-07	5.22E-07	8.59E-07	6.57E-07	1.44E-06	1.39E-06	3.67E-06	2.87E-06
50	8.23E-07	5.66E-07	9.89E-07	7.59E-07	1.90E-06	1.79E-06	5.02E-06	4.29E-06
100	9.04E-07	6.05E-07	1.11E-06	7.88E-06	2.36E-06	2.34E-06	6.75E-06	6.13E-06
Average	7.62E-07	4.98E-07	8.49E-07	6.44E-07	1.50E-06	1.44E-06	3.75E-06	3.24E-06
Stdev	9.12E-08	7.94E-08	1.73E-07	1.16E-07	5.32E-07	5.34E-07	1.85E-06	1.70E-06
	0.03* (T	⁻ =0.4°F;	0.08 (T	=14°F;	0.85 (T	=32°F;	0.63 (T	=50°F;
t-test	Sample #	1 and #2)	Sample #	1 and #2)	Sample #	1 and #2)	Sample #	1 and #2)

 Table 6.7
 Creep Compliance (D(t) in 1/psi) values for S3-40 Mix with RAP1

*Indicate a significant difference between the replicates (t-test <0.05)

Table 6.8 Cre	ep Compliance	(D(t) in 1/psi) values for S	54-0 Mix with RAP1
---------------	---------------	----------------	----------------	--------------------

Time (Sec.)	D(t) at T = -0.4°F;	D(t) at T = -0.4°F;	D(t) at T = 14°F;	D(t) at T = 14°F;	D(t) at T = 32°F;	D(t) at T = 32°F;	D(t) at T = 50°F;	D(t) at T = 50°F;
. ,	Sample	Sample	Sample 1	Sample	Sample	Sample	Sample	Sample
	1	2		2	1	2	1	2
2	4.52E-07	2.91E-07	4.76E-07	8.24E-07	8.02E-07	7.23E-07	2.19E-06	2.64E-06
5	4.92E-07	3.33E-07	5.47E-07	9.41E-07	9.09E-07	8.81E-07	2.78E-06	2.33E-06
10	4.92E-07	3.34E-07	6.55E-07	1.08E-06	1.15E-06	1.09E-06	3.91E-06	4.24E-06
20	6.02E-07	3.97E-07	6.08E-07	1.25E-06	1.38E-06	1.34E-06	5.29E-06	5.51E-06
50	6.26E-07	4.18E-07	9.04E-07	1.56E-07	1.90E-06	2.00E-06	8.05E-06	7.90E-06
100	7.35E-07	4.70E-07	1.05E-06	1.87E-06	2.49E-06	2.84E-06	1.09E-05	1.12E-05
Average	5.67E-07	3.74E-07	7.23E-07	1.25E-06	1.44E-06	1.48E-06	5.53E-06	5.63E-06
Stdev	1.07E-07	6.61E-08	2.16E-07	3.96E-07	4.35E-07	8.04E-07	3.37E-06	3.40E-06
	0.06 (T	=0.4°F;	0.06 (T=14°F;		0.92 (T=32°F;		0.96 (T=50°F;	
t-test	Sample #	¹ and #2)	Sample #	1 and #2)	Sample #	1 and #2)	Sample #	1 and #2)

Time (Sec.)	D(t) at T =4°F; Sample 1	D(t) at T = -0.4°F; Sample 2	D(t) at T = 14°F; Sample 1	D(t) at T = 14°F; Sample 2	D(t) at T = 32°F; Sample 1	D(t) at T = 32°F; Sample 2	D(t) at T = 50°F; Sample 1	D(t) at T = 50°F; Sample 2
2	3.81E-07	3.11E-07	5.82E-07	3.25E-07	8.73E-07	6.28E-07	1.21E-06	1.17E-06
5	4.06E-07	3.53E-07	6.77E-07	4.05E-07	1.01E-06	7.44E-07	1.68E-06	1.55E-06
10	4.36E-07	3.91E-07	7.28E-07	4.37E-07	1.21E-06	9.25E-07	2.09E-06	2.01E-06
20	4.72E-07	4.05E-07	8.57E-07	4.76E-07	1.49E-06	1.13E-06	2.60E-06	2.71E-06
50	5.02E-07	4.66E-07	1.12E-06	5.80E-07	2.04E-06	1.60E-06	3.88E-06	4.05E-06
100	6.12E-07	5.49E-07	1.39E-06	6.74E-07	2.83E-06	2.17E-06	5.32E-06	5.56E-06
Avg.	4.68E-07	4.12E-07	8.93E-07	4.83E-06	1.58E-06	1.20E-06	2.80E-06	2.84E-06
Stdev	8.26E-08	8.47E-08	3.08E-07	1.26E-07	7.42E-07	5.86E-07	1.54E-06	1.67E-06
	0.28 (T	=0.4°F;	0.06 (T=14°F;		0.35 (T=32°F;		0.96 (T=50°F;	
t-test	Sample #	1 and #2)	Sample #	1 and #2)	Sample #	1 and #2)	Sample #	1 and #2)

 Table 6.9
 Creep Compliance (D(t) in 1/psi) Values for S4-10 Mix with RAP1

 Table 6.10
 Poisson's Ratio for S3 and S4 Mixes with RAP1

Te mp (°F)	S3-25; Sample #1	S3-25; Sample #2	S3-40; Sample #1	S3-40; Sample #2	S4-0; Sample #1	S4-0; Sample #2	S4-10; Sample #1	S4-10; Sample #2
-4	0.127	0.125	0.208	0.198	0.213	0.235	0.201	0.211
14	0.146	0.151	0.223	0.235	0.254	0.265	0.238	0.244
32	0.168	0.178	0.235	0.239	0.315	0.378	0.308	0.324
50	0.222	0.236	0.298	0.302	0.321	0.345	0.381	0.375
t-	0.837 (S	ample #1	0.935 (S	Sample #1	0.506 (Sa	ample #1	0.909 (Sa	mple #1
test	and	#2)	and	d #2)	and	#2)	and	#2)

Table 6.11	Indirect	Tensile Stren	gth (psi) for S3	and S4	Mixes wit	h RAP1
------------	----------	---------------	----------	----------	--------	-----------	--------

Sample Number	S3-25	S3-40	S4-0	S4-10
1	553	390	503	399
2	542	380	515	332
Average	548	385	509	366

Figure 6.12 Variation of Creep Compliance of S3-25 Mix (RAP1) with Temperature.

Figure 6.13 Variation of Creep Compliance of S3-40 Mix (RAP1) with Temperature.

Figure 6.14 Variation of Creep Compliance for S4-0 Mix (RAP1) with Temperature.

Figure 6.15 Variation of Creep Compliance of S4-10 (RAP1) with Temperature. 84

Figure 6.16 Comparison of Creep Compliance Master Curves for S3-25 and S3-40 with RAP1.

Figure 6.17 Comparison of Creep Compliance Master Curves for S4-0 and S4-10 with RAP1.

It is evident from Figures 6.12 through 6.15 that creep compliance increases with an increase in temperature, as expected (Richardson and Lusher, 2008; Vargas, 2007). It is also evident from Figures 6.12 and 6.13 that the S3-25 mix is more sensitive to change in temperature as compared to the corresponding higher RAP containing mix (S3-40). For example, an increase in temperature by 82.4 °F (from $-0.4^{\circ}F$ to $+50^{\circ}F$) increased the creep compliance by approximately 709% and 465% for the S3-25 mix and the S3-40 mix (at 100 seconds), respectively. Also, an increase in temperature by 50°F (from 32°F to $+50^{\circ}F$) increased the creep compliance by approximately 550% and 350% for the S3-25 mix and the S3-40 mix (at 100 seconds), respectively. Similarly, S4 mixes containing higher RAP content showed less sensitivity towards temperature (Figures 6.14 and 6.15). For example, an increase in temperature by 82.4°F (from $-0.4^{\circ}F$ to $+50^{\circ}F$) increased the creep compliance by approximately 1730% and 835% for the S4-0 mix (at 100 seconds), respectively.

Master curves for creep compliance were generated for both S3-25 and S3-40 mixes, as well as for both S4-0% and S4-10%, as shown in Figures 6.16 and 6.17, respectively. It is clear from Figure 6.16 that both S3-25 and S3-40 mixes show similar creep compliance values up to a reduced time of 10 seconds (low temperature), beyond which the S3-25 mix started showing higher creep as compared to the S3-40 mix. Also, differences in creep values between the S3-25 and S3-40 mixes are more pronounced at a higher reduced time or temperature. For example, at a reduced time of 100 seconds, the S3-25 mix had approximately 75% higher creep compliance values as compared to the S3-40 mix. However, the percentage difference between the S3-25 and S3-40 mixes increased by 134% at a reduced time of 10,000 seconds. A similar trend was also observed for the S4 mixes (Figure 6.17). For example, at a reduced time of 100 seconds, the S4-0 mix had approximately 30% higher creep compliance values as compared to the S3-40 mix. However, the percent difference between the S3-25 and S3-40 mixes increased by 80% at a reduced time of 10,000 seconds. This behavior of the S3 and S4 mixes with an increase in RAP content of the mixes, is consistent with the observations reported by other researchers (e.g., Daniel and Lachance, 2005;

Richardson and Lusher, 2008; Solanki et al., 2012). This behavior may be attributed to hardness of the binder in the RAP as compared to the virgin binder, thereby increasing the viscosity of the mix.

6.1.3.3 Poisson's Ratio and Indirect Tensile Strength

The indirect tensile strength (IDT) of HMA is one of two primary inputs for the low-temperature or thermal cracking module in the new M-EPDG software. IDT is defined as the strength of HMA when subjected to tension. Although Poisson's ratio is not an input in the M-EPDG thermal cracking modulus, it is an input property for asphalt materials in the M-EPDG and can be entered directly or estimated from other properties. Tables 6.10 and 6.11 show the Poisson's ratio and the IDT values in a tabular form. Also, plots of average values of Poisson's ratio and IDT are presented in Figures 6.18 and 6.19, respectively. A statistical t-test was conducted on the Poisson's ratio results from the two duplicate specimens of each mix to determine the difference between the results of the replicate (Table 6.10). The results from the t-test show that there is no significant difference between the results of the duplicate specimens (t-test ≥ 0.05).

Figure 6.18 Poisson's Ratio of S3-25, S3-40, S4-0, and S4-10 Mixes with RAP1.

It is evident from Table 6.10 and Figure 6.18 that the Poisson's ratio values increase with increasing temperature, as expected (Richardson and Lusher, 2008). The results of the S3 mixes, present an increase in the Poisson's ratio values with an increase in the RAP content. For example, at -4°F, the value of Poisson's ratio increases from 0.127 to 0.208 for the S3-25 and S3-40 mixes, respectively. Comparatively, the results of the S4 mixes show a reduction in the Poisson's ratio values with an increase in the RAP content, except for the results at 50°F. Thus, the RAP content can increase the Poisson's Ratio as it is the case here for the S3 mixes and reported by Richardson and Lusher (2008) or decrease the Poisson's Ratio values of the HMA, as it is the case here for S4 mixes.

It is evident from Table 6.11 and the plots in Figure 6.19 that indirect tensile strength (IDT) in all of the mixes decreased with an increase in the RAP content. This trend is in accordance with results reported by Richardson and Lusher (2008). The results show that the IDT in the S3 mixes is more sensitive to the RAP content than in the S4 mixes. For instance, a 15% increase in RAP content in the S3 mixes and a 10% increase in the S4 mixes, reduces the IDT values by 30% and 27%, respectively.

Figure 6.19 Indirect Tensile Strength of S3-25, S3-40, S4-0, and S4-10 Mixes with RAP1 at a Temperature of 14°F.

6.2 RAP2

6.1.2 Volumetric Properties

The collected RAP materials from Site 2 were used for volumetric mix design in accordance with the AASHTO M 323 test method. Similar to Site 1, a total of four mix designs, namely, S3-25, S3-40, S4-0, and S4-10 were developed for Site 2. A total of six and five mix trials were used for developing the volumetric mix designs for the S3-40% RAP2 and S4-10% RAP2 asphalt mixes, respectively. The mix designs for the S3-25% RAP2 and S4-0 RAP2 mixes were provided by Schwarz Paving Co. However, due to construction problems, only S4-25% RAP2 was used in the construction, instead of S4-10% RAP2 and S4-0% RAP2 mixes. The mix design procedure consisted of mixing different percentages of virgin aggregates, virgin binder, and RAP2 satisfying the gradation requirements. The prepared asphalt mix was then conditioned and used to prepare cylindrical samples in the SGC in accordance with the AASHTO T 312 test method. The final trials were found to satisfy the volumetric mix design requirements for the S3-40 and S4-10 mixes. The mixes were designed for an equivalent single axle load (ESAL) level of 0.3 M – 3 M. The final volumetric mix design sheets for S3-25% RAP2, S3-40% RAP2, S4-10% RAP2 and S4-25% RAP2 asphalt mixes are presented in Appendix A (Figures A.12 through A.15).

6.2.2 Mix Performance

6.1.3 Rut and Moisture Resistance

The Hamburg Wheel Tracking (HWT) test results for the S3 and S4 mixes tested at different air void contents are presented in Figures 6.20 and 6.21. It is evident from Figure 6.20 and Figure 6.21 that the rut depth of S3-25 mix is higher than that of the S3-40 mix. For example, at 10,000 passes the S3-25 (air voids content = 6.6%) and the S3-40 (air voids content = 6.0%) mixes showed a rut depth of approximately 8.3 and 6.0 mm, respectively. Better rut resistance was observed in the case of the S4-25%RAP2 mix compared to the S3-25%RAP2 mix or the S3-40%RAP2 mix, up to approximately 13,000 wheel passes. For example, at 10,000 passes, the S4-25%RAP2 mix with an air voids content of 7.1% showed a rut depth of 4.4 mm, which is a lower rut values as compared to the S3-25%RAP2 and the S3-40%RAP2 mixes.

Figure 6.20 Hamburg Curves of S3 and S4 Mixes with RAP2.

Further, for evaluating the moisture damage susceptibility of mixes, according to Figure 6.21, all four characteristic regions are evident in the S3-25%RAP2 and S4-25%RAP2 mixes. The stripping inflection points for the S3-25%RAP2 and S4-25%RAP2 mixes were found approximately 10,567and 10,978 passes, respectively. According to FHWA (2012), an inflection point below 10,000 wheel passes indicates significant moisture damage susceptibility in the mix. No stripping slope and inflection point was observed in the S3-40%RAP2 mix.

Figure 6.21 Average Hamburg Curves of S3 and S4 Mixes with RAP2.

6.2.3 Fatigue Life

Table 6.12 shows the FTG test results, conducted on the asphalt beam samples compacted from the mixes used at the RAP 2 Site. As indicated in Table 6.12, the tests were conducted at 20°C temperature and at a constant frequency of 10 Hz. All of the FTG tests on mixes from the RAP 2 Site were conducted at a constant strain of 300 micro strains. From Table 6.12, it is evident that S3-25% RAP 2 mix showed an approximately 96% higher average fatigue life (470,981 cycles) compared to that of the S3-40% RAP 2 mix (240,108 cycles). While interpreting the FTG results, the difference in air voids between these two mixes should also be taken into account. The beam samples compacted with the S3-40% RAP 2 have an average air voids of 7.0%. However, this value for beam samples compacted with the S3-25% RAP 2 mix was only 5.5%. Therefore a better fatigue performance observed in the S3-25% RAP 2 may be partially attributed to its lower air voids.

Mix	Sample No.	Air Void (%)	Strain Level (μe)	Т (°С)	f (Hz)	Initial Stiffnes s (MPa)	AASHTO - Failure Cycles @50% Initial	Average Failure Cycles @50% Initial Stiffness	COV (%)
S4-25%	S4-25%-3-1	4.2	300	20	10	8937.4	4,347,246	4 773 623	12.6
RAP 2	S4-25%-4-1	4.1	300	20	10	8261.1	5,200,000	1,110,020	12.0
S3-25%	S3-25%-3-1	5.4	300	20	10	6588.5	453,899	470 981	51
RAP 2	S3-25%-3-2	5.6	300	20	10	6365.5	488,063	110,001	5.1
S3-40%	S3-40%-5-2	7.3	300	20	10	5816.4	237,236	240 108	17
RAP 2	S3-40%-8-1	6.8	300	20	10	6099.1	242,979	210,100	

Table 6.12Fatigue Test Results Conducted on the Asphalt Mixes from RAP 2Site

From Table 6.12 one can say that the average fatigue life of the S4-25% RAP 2 (4,773,623 cycles) is approximately 10 and 20 times higher than those of the S3-40% RAP 2 and the S3-25% RAP 2 mixes, respectively. In other words, favorable effect of addition of RAP 2 on fatigue life of asphalt mixes is more observed in the case of the S4 mixes, compared to that of the S3 mix. Also, the coefficients of variation (COV) of fatigue failure cycles for each mix type are shown in Table 6.12. It was observed that the COV varies between 1.7%, for S3-40% RAP 2 to 12.6% for S4-25% RAP 2 mix, which is well within the range of observations made by other researchers.

6.2.3 MEPDG Inputs

6.2.3.1 Dynamic Modulus

The same testing procedure followed for conducting dynamic modulus testing on the RAP1 mixes was repeated for testing the RAP2 mixes, in accordance with the AASHTO TP 62 test method. The average dynamic modulus values at each testing frequency and temperature are presented in Table 6.13. Plots generated from the dynamic modulus test results are presented in Figures 6.22 through 6.24. From these figures, it is evident that the dynamic modulus increases as the loading frequency increases, while it decreases as the testing temperature increases. For example, for the S3-25% RAP2 mix, the dynamic modulus (E*) values increase from 1100 ksi (at 0.1 Hz) to 2192 ksi (at 25 Hz) at a temperature of 40°F, while it decreases from 2,905 ksi (at 14 °F) to 148 ksi (at 130°F) at a constant frequency of 25Hz. This behavior is consistent with the observations made by Flintsch et al. (2008).

Міх Туре	Frequency (Hz)	At 14°F	At 40°F	At 70°F	At 100°F	At 130°F					
	25	2905	2192	1239	475	148					
	10	2812	2067	1037	358	114					
S3-25% RAP2	5	2735	1937	933	300	88					
	1	2537	1596	640	180	52					
	0.5	2443	1441	540	143	42					
	0.1	2206	1100	335	97	36					
	25	6736	4360	2066	789	226					
	10	6248	3553	1510	609	170					
S3-40% RAP2	5	5870	3327	1190	506	124					
	1	4976	2853	885	331	83					
	0.5	4590	2654	744	266	64					
	0.1	3713	1978	463	170	42					
	25	3569	2146	1040	563	230					
	10	3275	1903	861	427	181					
S4-25% RAP2	5	3055	1784	768	368	151					
34-23 /0 NAF 2	1	2559	1482	539	236	99					
	0.5	2354	1316	451	194	82					
	0.1	1907	1107	294	137	59					

Table 6.13 Dynamic Moduli (ksi) of S3-25% RAP2, S3-45% RAP2 and S4-25% RAP2 Mixes

Figure 6.22 Plot of Average Dynamic Moduli for S3-25% RAP2 Mix.

Figure 6.23 Plot of Average Dynamic Moduli for S3-40% RAP2 Mix.

Figure 6.24 Plot of Average Dynamic Moduli for S4-25% RAP2 Mix.

The master curves for dynamic modulus were developed based upon the procedure described in Chapter 3. The master curves for the S3 mixes (S3-25% RAP2 and S3-40% RAP2) and the S4 mix (S4-25%RAP2) are plotted in Figures 6.25 and 6.26, respectively. It is evident that the dynamic modulus of the mix containing 40% RAP (S3-40% RAP2) is higher than that of the mix containing 25% RAP (S3-25% RAP2). However, this difference reduces at lower frequencies. This is attributed to the effect of aggregate type and shape which become dominant at a lower frequency (equivalent to higher temperature). For example, the S3-40% RAP2 mix produced dynamic modulus values approximately 26%, 68% and 90% higher at a reduced frequency of 0.1, 10 and 100 Hz, respectively, as compared to the corresponding S3-25% RAP2 mix. These observations are in agreement with previous results reported by other researchers (e.g., Stroup-Gardiner and Wagner, 1999; Li et al., 2008; McGraw et al., 2010). The master curves represent the stiffness of the material for a wide range of loading frequencies (or loading times, equivalently). Also, it was observed that the master curves developed for the S3-25% RAP2 and the S4-25% RAP2 mixes show a similar trend and values at different frequencies, which was expected. The master curve of the dynamic modulus as a function of time (or frequency), describes the time (or

loading rate) dependency of the material. The amount of shifting at each temperature, required to form the master curve, depicts the temperature dependency of the HMA.

Figure 6.25 Dynamic Modulus Master Curves of S3-25% RAP2 and S3-40% RAP2 Mixes.

Figure 6.26 Dynamic Modulus Master Curve for S4-10% RAP2 Mix.

The log of shift factors used for developing the master curves of the S3 mixes (S3-25% RAP2 and S3-40% RAP2) and the S4 mix (S4-25% RAP2) are presented in Figures 6.27 and 6.28, respectively. It is clear from these figures that the S3-25% RAP2 had a lower shift factor compared to that of the S3-40% RAP2 mix up to the reference temperature (70°F). Above this reference temperature, the S3-40% RAP2 mix exhibited a higher magnitude of shift factor as compared to the S3-25% RAP2 mix at a comparable temperature. Some researchers have reported that the differences between the modulus values due to RAP are more pronounced at higher temperature or lower frequencies (e.g., Li et al., 2008).

Figure 6.28 Shift Factor Used for Generating the Master Curve of S4-25% RAP2 Mix.

6.2.3.2 Indirect Tensile Strength

The M-EPDG software uses the indirect tensile strength (IDT) of HMA as one of two primary inputs for the low-temperature or thermal cracking module. The same methodology for conducting IDT tests used for the RAP1 Site was followed for the RAP2 Site. Table 6.14 shows the IDT values of the S3-25% RAP2, the S3-40% RAP2 and the S4-25% RAP2 mixes in a tabular form. Also, plots of average values of IDT are presented in Figure 6.29. It is evident that indirect tensile strength (IDT) values in all of the mixes decreased with an increase in the RAP content. This trend is in accordance with the results reported by Richardson and Lusher (2008). The results show that the IDT values in S3 mixes are sensitive to the RAP content. For instance, a 15% increase in RAP content in the S3 mixes, reduces the IDT values by 23%. Also, it was observed that the IDT value of the S4-25% RAP2 mix is 5% less than that of the S3-25% RAP2 mix.

Sample No.	S3-25% RAP2	S3-40% RAP2	S4-25% RAP2					
No. 1	438.7	360.4	417.4					
No. 2	505.2	365.2	481.0					

Table 6.14 Indirect Tensile Strength for S3 and S4 Mixes

Figure 6.29 Indirect Tensile Strength of S3 and S4 Mixes at a Temperature of 14°F.

6.2.3.3 Creep Compliance

As noted earlier, the creep compliance test has been adopted in the M-EPDG to describe the mechanical behavior of HMA at low-temperature. The same methodology used for conducting the creep compliance tests on the mixes from RAP1 Site, was followed for the RAP2 Site. The creep compliance values at different loading times (i.e., 1 s, 2 s, 5 s, 10 s, 20 s, 50 s, and 100 s) for S3-25%RAP2, S3-40%RAP2 and S4-25%RAP2 are presented in Tables 6.15 through 6.17, respectively. Plots generated for the creep compliance test results are presented in Figures 6.30 through 6.32.

It is evident from Figures 6.30 through 6.32 that creep compliance increases with an increase in temperature, as expected (Richardson and Lusher, 2008; Vargas, 2007). It is also evident from Figures 6.30 and 6.31 that the S3-25% RAP2 mix is more sensitive to change in temperature as compared to corresponding mix containing higher RAP (S3-40% RAP2). For example, an increase in temperature by 82.4 °F (from -0.4°F to +50°F) increased the creep compliance by approximately 1081% and 1000% for the S3-25% RAP2 mix and the S3-40% RAP2 mix (at 100 seconds), respectively. Also, an

increase in temperature from 32°F to +50°F increased the creep compliance by approximately 243% and 187% for the S3-25% RAP2 mix and the S3-40% RAP2 mix (at 100 seconds), respectively.

Time	At T = -	At T = -	At T =					
(Sec.)	0.4°F;	0.4 °F;	14°F;	14°F;	32°F;	32°F;	50°F;	50°F;
	Sample 1	Sample	Sample 1	Sample	Sample	Sample	Sample	Sample
		2		2	1	2	1	2
1	3.31E-07	4.79E-05	3.05E-07	4.43E-05	4.61E-07	6.68E-05	1.23E-07	1.78E-05
2	3.38E-07	4.91E-05	3.52E-07	5.10E-05	5.33E-07	7.73E-05	6.88E-07	9.88E-05
5	3.53E-07	5.12E-05	4.01E-07	5.81E-07	5.60E-07	8.12E-05	1.30E-06	1.89E-04
10	3.69E-07	5.35E-05	4.18E-07	6.06E-05	7.37E-07	1.07E-04	1.55E-06	2.25E-04
20	3.89E-07	5.65E-05	4.69E-07	6.80E-05	9.15E-07	1.33E-04	2.36E-06	3.42E-04
50	4.28E-07	6.20E-05	5.62E-07	8.15E-05	1.28E-06	1.86E-04	3.76E-06	5.45E-04
100	4.68E-07	6.79E-05	6.60E-07	9.57E-05	1.61E-06	2.34E-04	5.53E-06	8.02E-04
Avg.	3.82E-07	5.54E-05	4.52E-07	6.56E-05	8.72E-07	1.26E-04	2.19E-06	3.17E-04
Stdev	5.02E-08	7.28E-06	1.23E-07	1.78E-05	4.32E-07	6.27E-05	1.89E-06	2.74E-04

Table 6.15 Creep Compliance (D(t) in 1/MPa) values for S3-25% RAP2 Mix

Figure 6.30 Variation of Creep Compliance for S3-25%RAP2 Mix with Temperature.

Figure 6.31 Variation of Creep Compliance for S3-40%RAP2 Mix with Temperature

Figure 6.32 Variation of Creep Compliance for S4-25%RAP2 Mix with Temperature.

Time (Sec.)	At T = - 0.4°F;	At T = -0.4 °F;	At T = 14°F;	At T = 14°F;	At T = 32°F;	At T = 32°F;	At T = 50°F;	At T = 50°F;
	Sample 1	Sample 2	Sample	Sample 2	Sample	Sample 2	Sample	Sample 2
1	2.35E-07	3.41E-05	2.52E-07	3.66E-05	3.23E-07	4.69E-05	8.49E-07	1.23E-04
2	2.44E-07	3.53E-05	3.18E-07	4.61E-05	4.70E-07	6.82E-05	1.06E-06	1.54E-04
5	2.60E-07	3.77E-05	3.64E-07	5.28E-05	5.55E-07	8.06E-05	1.37E-06	1.99E-04
10	2.77E-07	4.02E-05	4.14E-07	6.01E-05	6.98E-07	1.01E-04	1.72E-06	2.50E-04
20	3.00E-07	4.36E-05	4.50E-07	6.53E-05	8.47E-07	1.23E-04	2.28E-06	3.31E-04
50	3.44E-07	5.00E-05	5.54E-07	8.03E-05	1.19E-06	1.72E-04	3.70E-06	5.37E-04
100	3.92E-07	5.68E-05	6.87E-07	9.96E-05	1.50E-06	2.18E-04	4.31E-06	6.25E-04
Avg.	2.93E-07	4.25E-05	4.34E-07	6.30E-05	7.98E-07	1.16E-04	2.19E-06	3.17E-04
Stdev	5.72E-06	8.30E-06	1.47E-07	2.14E-05	4.20E-07	6.08E-05	1.34E-06	1.94E-04

 Table 6.16
 Creep Compliance (D(t) in 1/MPa) values for S3-40% RAP2 Mix

Master curves for creep compliance were generated for both S3-25% RAP2 and S3-40% RAP2 mixes, as well as for the S4-25% RAP2 mix as shown in Figures 6.33 and 6.34, respectively. It is clear from Figure 6.33 that the S3-25% RAP2 mixes shows higher creep compliance values up to a reduced time of 4 seconds, compared to those of the S3-40% RAP2 mixes. However, both the S3-25% RAP2 and the S3-40% RAP2 mixes show similar creep compliance values at a reduced time span between 10 and 4000 seconds. Beyond this tims, the S3-25% RAP2 mix starts showing a higher creep as compared to the S3-40% RAP2 mix. Also, differences in creep values between the S3-25% RAP2 and S3-40 mixes are more pronounced at higher reduced time or temperature. For example, at a reduced time of 1 seconds, the S3-25% RAP2 mix had approximately 6% higher creep compliance values as compared to the S3-40% RAP2 mix. However, the percentage difference between the S3-25% RAP2 and S3-40% RAP2 mixes increased to 26% at a reduced time of 100,000 seconds. This behavior of mixes with high RAP content is consistent with the observations reported by other researchers (e.g., Daniel and Lachance, 2005; Richardson and Lusher, 2008; Solanki et al., 2012). This behavior may be attributed to hardness of the binder in the RAP as compared to the virgin binder. A harder binder increases the viscosity of the mix. From

Figure 6.34, it was also observed that creep compliance values of the S4-25% RAP2 mix are at the same range as its S3 counterpart.

Time	At T = -	At T = -0.4	At T =					
(Sec)	0.4°F;	°F;	14°F;	14°F;	32°F;	32°F;	50°F;	50°F;
	Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2	Sample 1	Sample 2
1	2.59E-07	3.76E-05	3.68E-07	5.34E-05	7.00E-07	1.02E-04	1.43E-06	2.07E-04
2	2.74E-07	3.97E-05	3.92E-07	5.69E-05	9.33E-07	1.35E-04	2.02E-06	2.92E-04
5	3.00E-07	4.35E-05	4.26E-07	6.18E-05	1.14E-06	1.66E-04	2.64E-06	3.83E-04
10	3.26E-07	4.73E-05	4.81E-07	6.98E-05	1.38E-06	2.01E-04	3.40E-06	4.93E-04
20	3.60E-07	5.22E-05	5.51E-07	7.99E-05	1.68E-06	2.43E-04	4.38E-06	6.35E-04
50	4.19E-07	6.08E-05	6.74E-07	9.78E-05	2.26E-06	3.28E-04	6.00E-06	8.70E-04
100	4.79E-07	6.94E-05	8.01E-07	1.16E-04	2.97E-06	4.30E-04	7.64E-06	1.11E-03
Avg.	3.45E-07	5.01E-05	5.28E-07	7.65E-05	1.58E-06	2.29E-04	3.93E-06	5.70E-04
Std. dev	7.99E-08	1.16E-05	1.60E-07	2.32E-05	7.98E-07	1.16E-04	2.24E-06	3.25E-04

Table 6.17 Creep Compliance (D(t) in 1/MPa) values for S4-25% RAP2 Mix

Figure 6.33 Creep Compliance Master Curves for S3-25% RAP2 and S3-4% RAP2.

Figure 6.34 Creep Compliance Master Curves for S4-25% RAP2.

6.4 Summary

As explained in this chapter, the S3 (base course) and S4 (surface course) mixes with up to 40% RAP were tested in the laboratory for mechanistic performance. Two types of RAP (RAP1 and RAP2) were used to construct two test sections (Site 1 and Site 2), both located in Oklahoma. Site 1 had two lanes: one lane was paved by the contractor with traditional mixes (S3 mix with 25% RAP1 and S4 mix with 0% RAP1), and the other lane was constructed with custom mixes (S3 mix with 40% RAP1 and S4 with 10% RAP1). Site 2 was constructed in the same manner except that the custom mixes contained 25% RAP2 in the S4 mix. Findings from the performance data of tested mixes are summarized below:

- It was found that the voids in mineral aggregate (VMA) and voids filled with aggregate (VFA) of the RAP mixes increased with increasing percentage of RAP.
- The dynamic modulus test results illustrated that the asphalt mix containing higher amount of RAP has higher dynamic modulus values.
- From the Hamburg Wheel Test results it is observed that the rutting resistance of RAP mixes increases with an increase in RAP content. For instance, at 10,000

passes, the S3-25 (air void content = 7.1%) and S3-40 (air void content = 7.1%) mixes showed a rut depth of approximately 4.95 and 3.72 mm, respectively.

- Four-point beam fatigue test (FTG) test results show that the lower the RAP content the higher the fatigue life, irrespective of mix type (S3 or S4). However, more favorable effects in terms of fatigue life were observed in the case of S4 mixes compared to the S3 mixes when RAP is added in the mix.
- Indirect tensile strength (IDT) in all of tested mixes decreased with an increase in the RAP content. Test results also showed that IDT values of the S3 (base course) mixes are very sensitive to the RAP content. For instance, a 15% increase in RAP content in the S3 mixes, reduces the IDT values by 23%. Also, it was observed that the IDT values of the S4 (surface) mix with 25% RAP was about 5% less than that of S3 (base course) mix with the same RAP content.
- The creep compliance results showed an increase in the stiffness and a decrease in compliance of the mix due to an increase in RAP content. As expected, the creep compliance increases with an increase in temperature. It is also evident that the 25% RAP mix is more sensitive to change in temperature compared to corresponding mix containing higher RAP (40% RAP2). Up to a reduced time of 4 seconds, it is oberseved that mixes with 25% show higher creep compliance values compared to the mixes with 40% RAP. However, at a reduced time span btween 10 to 4000 seconds, mixes with 25% and 40% RAP show similar creep compliance values.

7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

This study was limited to laboratory and field evaluation of local RAPs and virgin materials (aggregate and binders). To this end, two RAP samples were collected for laboratory evaluation and stockpiled for the construction of two test sections. Different percentages (25% and 40% in base courses and 0% and 10% in surface courses) of each RAP sample were used to prepare base and surface mixes for conditions and specifications prevailing in Oklahoma. Virgin aggregates and binders used in the new HMA mixes were also collected from local sources and evaluated in the laboratory. Furthermore, in cooperation with two local contractors, two two-lane HMA test sections were constructed. One lane of each test section was constructed with the maximum allowable RAP (0% in surface course and 25% in base course) and the other lane was constructed with high RAP (10% in surface course and 40% in base course). Cylindrical core and block samples were collected from the constructed pavement sections and evaluated (dynamic modulus, creep, and beam fatigue) in the laboratory.

The recovery of asphalt binder was conducted at the Liquid Laboratory, ODOT Materials Division. The recovered binders from RAPs were evaluated for PG grading and determination of MEPDG input parameters. Collected RAP samples were extracted in accordance with the OHD L-26 Method using an NCAT Ignition Oven. The extracted aggregates were then evaluated in laboratory for mechanical and surface properties. Furthermore, virgin binders blended with RAP binder and virgin aggregates mixed with extracted aggregates from RAP were evaluated in laboratory. Findings of this study, presented in the next section, are expected to be useful to pavement professional in analyzing and designing HMA mixes with high RAP contents.

7.2 Conclusions

Based on the test results and findings of this study, the following conclusions are made:

 The stiffness of the belended binder increases with an increase in the percentage of the RAP binder. With 10% RAP binder, there is no change in the PG grade of the virgin binder. On With 40% RAP binder, the high and low PG temperatures are about two grades and one grade, respectively, higher than those of the virgin binder. It is also noted that the PG temperature does not change significantly with the addition of 0.5% anti-stirpping agent.

- With addition of 10%, 25% and 40% RAP binder in the virgin binder, the viscosity vlaues were found to be about 10%, 44%, and 119% higher compared to the virgin binder. The anti-stripping agent does not seem to have any significant effects on the viscosity of the binder blended with 25% RAP binder.
- As expected, the G* value decreases but the δ value increases with increased testing temperature. Another trend is that the G* value increases and the δ value decreases with an increase of the percentage of the RAP. The G* and δ values of blended binders under RTFO-aged condition at the range of temperature presented in this report can be used as MEPDG Level 1 input parameter for analyzing new HMA pavemenets with RAP. Based on the L.A. abrasion loss values and the Micro-Deval loss values, it can be observed that all of the mixes meet the aggregate soundness requirements set by ODOT. However, aggregates extracted by an NCAT oven show more L.A. abrasion loss values and Micro-Deval loss values, compared to their virgin counterparts.
- Sand equivalent tests show that NCAT oven-extracted aggregates with high RAP result in a significant increase in sand equivalent values compared to its virgin counterpart.
- Insoluble test results indicate that RAP aggregates do not meet the ODOT solubility requirement. Furthermore, aggregates extracted from S3 and S4 mixes and their virgin counterparts were found to be extremely low (below 7.0), which were in agreement with insoluble residue data available in the database at the ODOT Materials Division.
- It was found that the voids in mineral aggregate (VMA) and voids filled with aggregate (VFA) of the RAP mixes increased with increasing percentage of RAP.
- The dynamic modulus test results show that the asphalt mixes containing high RAP have higher dynamic modulus values.

- From Hamburg Wheel Test results, it is observed that rutting resistance of RAP mixes increases with an increase in RAP content. For instance, at 10,000 passes the S3-25 (air void content = 7.1%) and the S3-40 (air void content = 7.1%) mixes showed a rut depth of approximately 4.95 mm and 3.72 mm, respectively.
- Four point beam fatigue test results show that the lower the RAP content, the higher the fatigue life, irrespective of mix type (S3 or S4). However, more favorable effects in terms of fatigue life were observed in the case of S4 mixes compared to the S3 mixes when RAP is added in the mix.
- Indirect tensile strength (IDT) in all tested mixes decreased with an increase in the RAP content. The test results also showed that IDT of S3 (base course) mixes are very sensitive to the RAP content. For instance, a 15% increase in RAP content in the S3 mixes, reduces the IDT values by 23%. Also, it was observed that the IDT value of the S4 (surface) mix with 25% RAP was about 5% less than that of S3 (base course) mix with the same RAP content.
- The creep compliance results showed an increase in the stiffness and a decrease in compliance of the mix due to increased RAP content. As expected, the creep compliance increases with an increase in temperature.

7.3 Recommendations

This study used bulk RAP samples collected from asphalt millings of unknown or little known history. Studying the effect of simulated RAPs of different ages (e.g., 10 years, 20 years, 30 years, etc.) is expected to provide the changes in mechanistic properties of evaluated materials with respect to aging. That was beyond the scope of this project and is a research need that may be considered by OkTC and ODOT in future. Furthermore, a comprehensive database of existing RAP stockpiles will be highly beneficial to pavement professionals in Oklahoma.

8. IMPLEMENTATION/TECHNOLOGY TRANSFER

8.1 Implementation and Technology Transfer Workshop

Technology transfer has occurred continuously during this project. It has occurred at a number of levels. First, at the local level, the research team worked very closely with a design firm, EST Inc. located in Moore, Oklahoma, to perform volumetric mix designs of HMA with high RAP contents (up to 10% RAP in surface courses and 40% RAP in base courses). Secondly, two local paving companies namely Silver Star Construction Co. in Moore, Oklahoma and Schwarz Paving Inc. in Oklahoma City, Oklahoma successfully constructed the HMA test sections with high RAP contents. The City of Norman and the City of Oklahoma City were well informed about these custom HMA mixes through formal and information communications pre- and post- construction phases of the project. The ODOT Research Panel members were informed about these custom HMA mixes and construction schedules during the bi-annual and final project meetings of the matching project (ODOT SPR Item 2223: Test Methods for Use of Recycled Asphalt Pavement in Asphalt Mixes). Furthermore, a presentation titled "Recycled Asphalt Pavement Research at OU," was made during the visit of ODOT Personnel to the University of Oklahoma on June 22, 2011. An invited lecture on "Green Paving Technology," was made to a group of about 35 individuals representing K-12 Middle School Teachers in Oklahoma on June 16, 2011.

In coordination with OkTC (Dr. Hagen), one technology transfer workshop (two hours), covering the benefits and findings of this study, was held at the ODOT Facility Office (Commission Room) in Oklahoma City on September 18, 2012. The research team discussed different phases (planning, design, construction) and presented the findings of this project to the workshop participants (about 25) that included executives, materials engineers and division engineers from ODOT, engineers from FHWA, personals from OkTC, members from OAPA, and researchers and students from OkTC-affiliated universities (OU, OSU and LU). Two professional development hours (PDH) were offered to the interested participants.

8.2 Journal and Proceedings Papers

The scale and breadth of this project have drawn national and international attention. The research team has published/submitted 3 journal articles and 7 proceedings papers, and made 11 platform and 4 poster presentations. Furthermore, test data from this project are integral part of a Master's thesis and two Ph.D. dissertations. The publication records of the research team related to the project are listed below:

8.2.1. Referred Journal Papers

- Solanki, P., Zaman, M., Hossain, Z., and Adje, D. "Effect of Recycled Asphalt Pavement on Thermal Cracking Resistance of Hot Mix Asphalt," in the *International Journal of Geomechanics (IJOG)*, (Submitted August 2012; in Review).
- Hossain, Z., and Zaman, M., "Sensitivity of Oklahoma Binders on Dynamic Modulus of Asphalt Mixes and Distress Functions," in the *Journal of Materials in Civil Engineering*, August, 2012, Volume 24, No. 8, 1076–1088.
- Hossain, Z., Solanki, P., Zaman, M., Lewis, S., and Hobson, K. "Influence of Recovery Processes on Properties of Binders and Aggregates Recovered from Recycled Asphalt Pavement," in the *Journal of ASTM International (JAI)*, Vol. 9, Issue 3, February 2012, Page Count: 18.

8.2.2. Referred Conference Papers

- Ghabchi, R., Singh, D., Zaman, M., Hossain, Z., Solanki, P., and Adje D. "A Laboratory Study to Evaluate the Effects of RAP Sources on Performance of Asphalt Mixes," *GeoCongress 2014* (Submitted February 2013, in Review).
- Hossain, Z., Zaman, M., and Doiron, C. "Mechanistic Empirical Pavement Design Guide Input Parameters for Unbound Aggregates in Oklahoma," *2nd IACGE International Conference on Geotechnical and Earthquake Engineering*, October 25-27, 2013 (Submitted February 2013, in Review).
- Pranshoo, S., P., Hossain, Z., Adje, D., Ghabchi, R., Singh, D., and Zaman, M.
 "Effect of Recycled Asphalt Pavement on Mechanistic Properties of Hot Mix Asphalt," *OkTC-ODOT Research Day*, October 4, 2012.

- Solanki, P., Hossain, Z., Zaman, M., and Adje, D., "Volumetric and Mechanistic Characteristics of Asphalt Mixes Containing Recycled Asphalt Pavement," *in Proc. of GeoCongress 2012*, March 25-29, 2012.
- Hossain, Z., Solanki, P., Zaman, M., "Mechanistic Evaluation of Recovered Materials from Recycled Asphalt Pavement," *in Proc. of GeoCongress 2012*, March 25-29, 2012.
- Hossain, Z., Buddhalla, A., O'Rear, A. O., Zaman, M., Laguros, J. L., and Lewis, S., "Recycled Asphalt Pavement in new Asphalt Mixtures: State of the Practice," in the 2nd International symposium on Asphalt Pavement and Environment, October 1-3, 2012, Fortaleza, Brazil.
- Pranshoo, S., P., Hossain, Z., Adje, D., and Zaman, M. "Effect of Recycled Asphalt Pavement on Thermal Cracking Resistance of Hot Mix Asphalt," 2nd International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications, Beijing, China, October 15-16, 2012.

8.2.3. Referred Conference Abstracts

- Hossain, Z., Zaman, M., and Solanki, P. "Prediction of Dynamic Modulus of Asphalt Mixes with Reclaimed Asphalt Pavement," 2013 Conference of the ASCE Engineering Mechanics Institute, to be held August 4-7, 2013, Northwestern University, Evanston, IL
- Hossain, Z., Zaman, M., and Solanki, P. "State-of-the-Practice and Mechanistic Evaluation of New Asphalt Mixes with High Reclaimed Asphalt in Oklahoma," 2013 Summer Workshop of the TRB Committee ADC60 on *Sustainable Best Management Practices in Transportation*, to be held on July 14-17, 2013, Pittsburgh, PA
- Hossain, Z., Solanki, P., Zaman, M., Lewis, S., and Hobson, K., "Influence of Recovery Processes on Properties of Binders and Aggregates Recovered from Recycled Asphalt Pavement," In the *International Symposium on Testing and Specifications of Recycled Materials for Sustainable Geotechnical Construction*, February 2-4, 2011, Baltimore, Maryland.

 Hossain⁻ Z., M. Zaman, C. Doiron, J. Autrey, A, Gupta, J. Laguros, "Influences of Recovery Methods on Properties of Binders and Aggregates Recovered from Recycled Asphalt Pavement," presented at 47th Petersen Asphalt Research Conference (PARC), Western Research Institute, July 12-15, 2010 in Laramie, Wyoming.

8.2.4. Posters

- Zaman, M., Hossain, Z., Solanki, P., Ghabchi, R., Singh, D., and Lewis, S.
 "Mechanistic Evaluation Reclaimed Asphalt Pavement (RAP) for New Mixes," ODOT-OTC Research Day, Oklahoma City, October 4, 2012.
- Hossain, Z., Zaman, M., and Lewis, S. "Test Methods for the Evlaution of RAP," *ODOT-OTC Research Day*, Oklahoma City, October 14, 2011.
- Zaman, M., Hossain, Z., Solanki, P., Laguros, J., and Lewis, S. "Local Calibration of the MEPDG for Asphalt Pavements with RAP," *ODOT-OTC Research Day*, Oklahoma City, October 15, 2010.
- Zaman, M., and Hossain, Z. "Implementation of MEPDG for Asphalt Pavement with RAP," Research and Innovative Technology Administration (RITA) Site Visit, *Oklahoma Transportation Center (OTC),* Norman, March 30, 2010.

8.2.5. Thesis/Dissertation

- Ghabchi, R., "Laboratory Characterization of Recycled and Warm Mix Asphalt for Enhanced Pavement Applications," *Ph. D. Dissertation*, Department of Civil Engineering and Environmental Science, the University of Oklahoma, Norman, Oklahoma, 2014 (Expected), in Preparation, xx pages.
- Adje, D., "Effect Of Recycled Asphalt Pavement On Mechanistic Performance Of Hot Mix Asphalt," *Masters Thesis*, Department of Civil Engineering and Environmental Science, the University of Oklahoma, Norman, Oklahoma, 2012, 128 pages.
- Hossain, Z., "Evaluation of Rheological Properties of Asphalt Binders for Pavement Design Applications," *Ph. D. Dissertation*, Department of Civil

Engineering and Environmental Science, the University of Oklahoma, Norman, Oklahoma, 2011, 238 pages.

9. REFERENCES

- AASHTO (2010). "Standard Specifications for Transportation Materials and Methods of Sampling and Testing," Part 2A and Part 2B: Test, 27th Edition.
- AASHTO T322, (2010). "Determining the Creep Compliance and Strength of Hot-Mix Asphalt (HMA) Using the Indirect Tensile Test Device."
- AASHTO TP62, (2010). "Standard Method of Test For Determining Dynamic Modulus of Hot- Mix Asphalt Concrete Mixtures."
- Abdelrahman, M., Alam, T. B., and Zollars, J. (2010). "Performance of High Recycled Asphalt Pavement (RAP) Content as Base Layer in Flexible Pavement," Journal of Solid Waste Technology and Management, Vol. 36, No. 3, pp. 131 – 142.
- Abdulshafi, O., Kedzierski, B. and Fitch, M. G. (2002). "Determination of Recycled Asphalt Pavement (RAP) Content in Asphalt Mixes Based on Expected Mixture Durability." Final report, Submitted to the Ohio Department of Transportation.
- Alam, T. B., Abdelrahman, M., and Schram, S. (2010). "Laboratory Characterisation of Recycled Asphalt Pavement as a Base Layer," International Journal of Pavement Engineering, Vol. 11, No. 2, pp. 123 – 131.
- Ali, O., (2005). "Evaluation of the Mechanistic Empirical Pavement Design Guide (NCHRP 1-37A)." UR 3002.1, Research Report No. 216, National Research Council, Canada.
- Al-Qadi, I. L., Elseifi, M. A., and Yoo, P. J. (2004). In-situ Validation of Mechanistic Pavement Finite Element Modeling." Proceedings, 2nd Int. Conference on Accelerated Pavement Testing, Minneapolis.
- ARA, Inc., ERES Consultants Division (2004). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. Part 2 - Design Inputs,

Chapter 2-Material Characterization. Report prepared for the National Cooperative Highway Research Program. Champaign, Illinois.

- Asphalt (Executive Summary). Report 01-05A, National Center for Asphalt Technology (NCAT), Auburn.
- Birgisson, B., Sholar, G., and Roque, R. (2005). "Evaluation of a Predicted Dynamic Modulus for Florida Mixture." Transportation Research Record, No. 1929, TRB, pp. 200-207.
- Bonaquist, R., and Christensen, D.W. (2005). "Practical Procedure for Developing Dynamic Modulus Master Curves for Pavement Structural Design." In Transportation Research Record: Journal of the Transportation Research Board, N.. 1929, Transportation Research Board of the National Academics, Washington, D.C., pp. 208-217.
- Brown, E. R. (1984). "Evaluation of Properties of Recycled Asphalt Concrete Hot Mix," Army Engineer Waterways Experiment Station: Vicksburg, MS, Technical Report GL842.
- Brown, E. R., Kandhal, P. S. & Zhang, J. (2001) Performance Testing for Hot Mix.
- Cascione, A., Williams, R., Gillen, S. and Haugen, D. (2010). "Utilization of Post-Consumer Recycled Asphalt Pavement in Hot Mix Asphalt" Proceedings, of the 2010 Mid-Continent Transportation Research Forum, Madison, Wisconsin.
- Chehab, G. R., O'Quinn, E., and Kim, Y. R. (2000). "Specimen Geometry Study for Direct Tension Test Based on Mechanical Tests and Air Void Variation in Asphalt Concrete Specimens Compacted by Superpave Gyratory Compactor". Transportation Research Record, TRB, 1723, 125-132. National Research Council, Washington, D.C.
- Cooley, L. A., Jr., P. S. Kandhal, M. S. Buchanan, F. Fee, and A. Epps. Loaded Wheel Testers in the United States: State of the Practice. In *Transportation Research E-Circular*, Number E-C016, TRB, National Research Council, Washington, D.C., 2000.

- Coree, B., Ceylan, H., and Harrington, D., (2005). "Implementing the Mechanistic-Empirical Pavement Design Guide." IHRB Project TR-509. Iowa Department of Transportation.
- Cross, S. A., Jakatimath, A., and KC, S. (2007). "Determination of Dynamic Modulus Master Curves for Oklahoma HMA Mixtures," Final Report, ODOT Item Number 2177, Oklahoma Department of Transportation, Oklahoma City, Oklahoma.
- Daniel, J. S. and Lachance, A. (2005). "Mechanistic and Volumetric Properties of Asphalt Mixtures with Recycled Asphalt Pavement," Transportation Research Record: Journal of the Transportation Research Board, No. 1929, Transportation Research Board of the National Academies, Washington, D.C., pp. 28–36.
- Flintsch, G. W., Loulizi, A., Diefenderfer, S. D., Galal, K. A., and Diefenderfer, B.K. (2007). "Asphalt Materials Characterization in Support of Implementation
- GL (2013a). GLI Method Summary "Carbon, Hydrogen, Nitrogen, and Sulfur Determination using the Flash 2000 Elemental Analyzer" Galbraith Laboratories Inc., Knoxville, TN.
- GL (2013b). GLI Method Summary "Oxygen Determination Using Thermo Finnigan FlashEA™ Elemental Analyzer," Galbraith Laboratories Inc., Knoxville, TN
- Goh, S.W., You, Z., Williams, R.C., and Li, X. (2011). "Preliminary Dynamic Modulus Criteria of HMA for Field Rutting of Asphalt Pavements: Michigan's Experience." ASCE, Journal of Transportation Engineering, Vol. 137, No.1, pp.37-45.
- Hajj, E., Sebaaly, P., and Shrestha, R. (2007). "A laboratory evaluation of Recycled Asphalt Pavement in HMA Mixtures," Final Report, University of Nevada, Reno, NV.
- Han, J., Thakur, S. C., Chong, O., and Parson, L. R. (2011). "Laboratory evaluation of characteristics of Recycled Asphalt Pavement in Kansas" Final Report K-TRAN: KU-09-2., Kansas Department of Transportation, Lawrence, KN.

- Hobson, K. (2011). Information on I-35 Milling Section, Personal Communication with Kenneth Hobson, Materials Engineers, Oklahoma Department of Transportation of Transportation, Oklahoma City, Oklahoma.
- Huang, B., Li, G., Vukosavljevic, D., Shu, X. and Egan, B. K. (2005). "Laboratory Investigation of Mixing Hot-Mix Asphalt with Reclaimed Asphalt Pavement," Transportation Research Record: Journal of the Transportation Research Board, No. 1929, Transportation Research Board of the National Academies, Washington, D.C., pp. 37–45.
- Huang, B., Zhang, Z. and Kinger, W. (2004). "Fatigue Crack Characteristics of HMA Mixtures Containing RAP," Proceedings, 5th International RILEM Conference on Cracking in Pavements, Limoges, France.
- Izzo, R. P. and M. Tahmoressi. (1999). Use of Hamburg Wheel-Tracking Device for Evaluating Moisture Susceptibility of Hot-Mix Asphalt. In *Transportation Research Record: Journal of the Transportation Research Board*. No. 1681, TRB, Washington, D.C., 1999, pp. 76-85.
- Kandhal, P. S., Rao, S. S., Watson, D. E., and Young, B. (1996). "Performance of Recycled Hot-Mix Asphalt in Georgia." Transportation Research Record 1507, Transportation Research Board, Washington D.C., pp. 67-77.
- Kennedy, T. W., Tam, W. O. and Solaimanian, M. (1998). "Effect of Reclaimed Asphalt Pavement on Binder Properties Using the Superpave® System." Research Report 1205-1, Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, TX.
- Kim S., Ceylan, H., and Heitzman, M. (2005). "Pavement Systems Using the Mechanistic-Empirical Pavement Design Guide." Proceedings of the 2005 Mid-Continent Transportation Research Symposium.
- Kim, S., Byron, T., Sholar, G., and Kim J. (2009). "Evaluation of Use of High Percentage of Reclaimed Asphalt Pavement (RAP) for Superpave® Mixtures." FDOT/SMO/07-507, Florida DOT.
- Kim, Y. R., Seo, Y., King, M., and Momen, M. (2004). Dynamic Modulus Testing of Asphalt Concrete in Indirect Tension Mode. In Transportation Research Record, TRB, 1891, 163-173. National Research Council, Washington, D.C.

- Li, X., Clyne, T. R. and Marasteanu, M. O. (2004). "Recycled Asphalt Pavement (RAP) Effects on Binder and Mixture Quality." Final Report MN/RC-2005-02, University of Minnesota.
- Li, X., Marasteanu, M., Williams, R. C., and Clyne, T. R. (2008). "Effect of RAP (Proportion and Type) and Binder Grade on the Properties of Asphalt Mixtures," Transportation Research Board 2008 Annual Meeting, CD-ROM Publication, Transportation Research Board, National Research Council, Washington D. C.
- Loria, L., Hajj, E., Sebaaly, P., Barton, M., Kass, S., and Liske, T. (2011).
 "Performance Evaluation of Asphalt Mixtures with High RAP Content" Paper No. 11-2836 Transportation Research Board Annual Meeting.
- Lu, Q. and J. T. Harvey. Evaluation of Hamburg Wheel-Tracking Device Test with Laboratory and Field Performance Data. In *Transportation Research Record: Journal of the Transportation Research Board*. No. 1970, TRB, Washington, D. C., 2006, pp. 25 – 44.
- Massad, E., Muhunthan, B., Shashidhar, N. and Harman, T. (1999). "Quantifying Laboratory Compaction Effects on the Internal Structure of Asphalt Concrete." Transportation Research Record No. 1681, Transportation Research Board of the National Academies, Washington, DC; pp. 179–185.
- McDaniel, R. and Anderson, R. M. (2001). "Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method: Technician's Manual," NCHRP Report 452, Transportation Research Board, National Research Council, Washington, D.C.
- McDaniel, R. S., and Shah, A. (2003). "Use of Reclaimed Asphalt Pavement (RAP) Under SuperPave Specifications," Journal of the Association of Asphalt Paving Technologists, Vol. 72, pp. 226-252.
- McDaniel, R. S., Soleymani, H., and Shah, A. (2002). "Use of Reclaimed Asphalt Pavement (RAP) Under Superpave® Specifications. North Central Superpave® Center, West Lafayette, IN.
- McDaniel, R.S., and Anderson, R.M. (2001). "Recommended Use of Reclaimed Asphalt Pavement in the Superpave® Mix Design Method: Technician's Manual", NCHRP Report 452.

- McDaniel, R.S., Soleymani, H., Anderson, R. M., Turner, P., and Peterson, R. (2000). "Incorporation of Reclaimed Asphalt Pavement in the Superpave® System," NCHRP 9-12. National Cooperative Highway Research Program, Transportation Research Board, National Research Council.
- McGraw, J., Johnson, E., Johnson, G., Dai, S. Linell, D. and Watson, M. (2010). Incorporation of Recycled Asphalt Singles in Hot-Mixed Asphalt Pavement Mixtures, Report No. MN/RC 2010-08, Minnesota Department of Transportation, St. Paul, MN.
- Mohammad, L. N., Negulescu, I. I., Daranga, Z. W. C., Daly, W. H., and Abadie, C. (2003). "Investigation of the Use of Recycled Polymer Modified Asphalt Binder in Asphalt Concrete.
- Mohammad, L. N., Negulescu, I. I., Wu, Z., Daranga, C., Daly, W. H., and Abadie, C. Concrete Specimens Compacted by Superpave Gyratory Compactor." Journal of Transportation Research Record, No. 1723, 2000, pp. 125–132.
- NCHRP (2004). "Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures," Final Report 1-37A, Part 2 Design Input, Chapter 2, Material Characterization, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington D.C.
- ODOT (2011), OHD L-45, Method of Test for Determining the Specific Gravity and Unit Weight of Compacted Bituminous Mixtures using the Corelok[™] Apparatus, Material and Testing e-Guide, DepartmentTestMethods(OHDL),2008 http://www.okladot.state.ok.us/materials/pdfs-ohdl/ohdl45.pdf. Accessed July 20, 2011.
- Oklahoma Department of Transportation (ODOT). Construction Engineering, Material and Testing e-Guide, Test Data, www.okladot.state.ok.us/materials/tstdatmu.htm, Dec. 2010.
- Prowell, B.D. and Baker, N.V. (2004). "Evaluation of the New Test Procedures for Determining the Bulk Specific Gravity of Fine Aggregate Using Automated Methods." Transportation Research Record No. 1874, Transportation Research Board, Washington, D.C, pp. 11-18.

- Prowell, B.D., Zhang J. and Brown, E.R. (2004). "Aggregates Properties and the Performance of Superpave-Designed Hot Mix Asphalt." Transportation Research Record No. 539, Transportation Research Board, Washington, D.C, pp. 60-68.
- Richardson, D. N., and Lusher, S. M. (2008). "Determination of creep compliance and tensile strength of Hot-Mix Asphalt for Wearing Courses in Missouri." MoDOT Report OR08-18, Missouri Department of Transportation.
- Siddharthan, R., V., Yao, J., and Sebaaly, P. E. (1998). "Pavement Strain from Moving Dynamic 3D Load Distribution," In American Society of Civil Engineers: Journal of Transportation Engineering, 124(6), ASCE, pp. 557–566.
- Solanki P., Hossain Z., Zaman M., and Adje D., (2011). "Volumetric and Mechanistic Characteristics of Asphalt Mixes Containing Recycled Asphalt Pavement," Geo-Congress 2012.
- Stroup-Gardiner M., and Wagner, C. (1999). "Use of RAP in Superpave HMA Applications." Transportation Research Record: Journal of Transportation Board, No. 1681, TRB, National Research Record Council, Washington, D.C., pp. 1-9.
- Tabaković, A. Gibney, A., McNally, C., and Gilchrist, M. D. (2010). "Influence of Recycled Asphalt Pavement on Fatigue Performance of Asphalt Concrete Base Courses," ASCE Journal of Materials in Civil Engineering, Vol. 22, No. 6, pp. 643–650.
- Vargas, A. (2007). "Evaluation of the use of reclaimed asphalt pavement in stone matrix asphalt mixtures," M.S. Thesis, Auburn University, Auburn, AL. Website: http://library.modot.mo.gov/RDT/reports/Ri05052/or08018.pdf
- Williams, R.C. and B. D. Prowell.. Comparison of Laboratory Wheel-Tracking Test Results with WesTrack Performance. In *Transportation Research Record: Journal of the Transportation Research Board*. No. 1681. TRB, Washington, D.C. 1999, pp. 121-128.
- Witczak, M. W., Kaloush, K., Pellinen, T., Basyouny, M. E. and Quintus, H. V. (2002). Simple Performance Test for Superpave Mix Design. Report NCHRP-465, National Cooperative Highway Research Program. National Research Council, Washington, D.C.

- Wu, Y., Parker, F., and Kandal, K. (1998). "Aggregate toughness / abrasion resistance and durability / soundness tests related to asphalt concrete performance in pavements." NCAT Report No. 98-4.
- Yildirim, Y., P. W. Jayawickrama, M. S. Hossain, A. Alhabshi, C. Yildirim, A. F. Smit, and D. Little. *Hamburg Wheel-Tracking Database Analysis*. Final Report No. FHWA/TX-05/0-1707-7, Texas Department of Transportation, Austin, T.X., 2007.
- Yuang Y. (1993). "Pavement Analysis and Design." 2nd Edition, Pearson Prentice Hall.
- Zelelew, H. M. and Papagiannakis, A. T. (2011). "A volumetric thresholding algorithm for processing asphalt concrete X-ray CT images," International Journal of Pavement Engineering, 12:6, 543-551.

A. APPENDIX A: Trial Mix Designs for HMA Mixes

Trial and final mix design sheets of S3 and S4 mixes with different percentages of RAP1 and RAP2 are presented in this section.

Sieve Size	#67 Rock	5/8" Chips	Screenings	Man. Sand	Sand	RAP	Combined
1 in	97	100	100	100	100	100	100
3/4 in	88	100	100	100	100	97	97
1/2 in	59	96	100	100	100	90	90
3/8 in	37	84	100	100	100	55	72
#4	6	33	89	92	100	34	51
#8	2	9	57	48	99	25	35
#16	1	4	37	25	98	21	28
#30	1	3	23	13	91	17	22
#50	1	2	14	7	67	10	14
#100	0	2	8	4	25	7	7
#200	0.3	1.2	4.1	1.9	8.3	4.3	3.6
%USED	14	10	15	10	11	40	100

Table A.1Percent Passing of S3 Mix with 40% RAP1 and PG 64-22OK Binder:Trial #1

Table A.2	Percent Passing of S3 Mix with 40% RAP1 and PG 64-220K Binder:
	Trial #2

Sieve Size	#67 Rock	5/8" Chips	Screenings	Man. Sand	Sand	RAP	Combined
1 in	97	100	100	100	100	100	100
3/4 in	88	100	100	100	100	97	97
1/2 in	59	96	100	100	100	90	89
3/8 in	37	84	100	100	100	55	69
#4	6	33	89	92	100	34	46
#8	2	9	57	48	99	25	30
#16	1	4	37	25	98	21	22
#30	1	3	23	13	91	17	16
#50	1	2	14	7	67	10	10
#100	0	2	8	4	25	7	6
#200	0.3	1.2	4.1	1.9	8.3	4.3	3.1
%USED	17	13	12	13	5	40	100

Sieve	#67	5/8"	Screenin	Man.	San		Combin					
Size	Rock	Chips	gs	Sand	d	КАГ	ed					
1 in	97	100	100	100	100	100	100					
3/4 in	88	100	100	100	100	97	97					
1/2 in	59	96	100	100	100	90	89					
3/8 in	37	84	100	100	100	55	69					
#4	6	33	89	92	100	34	43					
#8	2	9	57	48	99	25	25					
#16	1	4	37	25	98	21	17					
#30	1	3	23	13	91	17	12					
#50	1	2	14	7	67	10	7					
#100	0	2	8	4	25	7	5					
#200	0.3	1.2	4.1	1.9	8.3	4.3	2.7					
%USED	16	20	12	12	0	40	100					

Table A.3Percent Passing of S3 Mix with 40% RAP1 and PG 64-22OK Binder:Trial #3

Table A.4Percent Passing of S3 Mix with 40% RAP1 and PG 64-22OK Binder:Trial #4

Sieve Size	#67 Rock	5/8" Chips	Screenings	Man. Sand	Sand	RAP	Combined
1 in	97	100	100	100	100	100	100
3/4 in	88	100	100	100	100	97	97
1/2 in	59	96	100	100	100	90	90
3/8 in	37	84	100	100	100	55	70
#4	6	33	89	92	100	34	43
#8	2	9	57	48	99	25	24
#16	1	4	37	25	98	21	16
#30	1	3	23	13	91	17	11
#50	1	2	14	7	67	10	7
#100	0	2	8	4	25	7	4
#200	0.3	1.2	4.1	1.9	8.3	4.3	2.7
%USED	12	25	8	15	0	40	100

Sieve Size	#67 Rock	5/8" Chips	Screenings	Man. Sand	Sand	RAP	Combined
1 in	97	100	100	100	100	100	100
3/4 in	88	100	100	100	100	97	100
1/2 in	59	96	100	100	100	90	97.7
3/8 in	37	84	100	100	100	55	90
#4	6	33	89	92	100	34	67
#8	2	9	57	48	99	25	35
#16	1	4	37	25	98	21	20
#30	1	3	23	13	91	17	12
#50	1	2	14	7	67	10	7
#100	0	2	8	4	25	7	4
#200	0.3	1.2	4.1	1.9	8.3	4.3	2.4
%USED	0	32	22	36	0	10	100

Table A.5Percent Passing of S4 Mix with 10% RAP1 and PG 64-22OK Binder:Trial #1

Table A.6Percent Passing of S4 Mix with 10% RAP1 and PG 64-22OK Binder:Trial #2

Sieve Size	#67 Rock	5/8" Chips	Screenings	Man. Sand	Sand	RAP	Combined
1 in	97	100	100	100	100	100	100
3/4 in	88	100	100	100	100	97	100
1/2 in	59	96	100	100	100	90	97.7
3/8 in	37	83	100	100	100	55	90.4
#4	6	33	89	92	100	34	68
#8	2	9	57	48	99	25	39
#16	1	4	37	25	98	21	24
#30	1	3	23	13	91	17	16
#50	1	2	14	7	67	10	10
#100	0	2	8	4	25	7	5
#200	0.3	1.2	4.1	1.9	8.3	4.3	2.8
%USED	0	30	22	33	5	10	100

Sieve Size	#67 Rock	5/8" Chips	Screenings	Man. Sand	Sand	RAP	Combined				
1 in	97	100	100	100	100	100	100				
3/4 in	88	100	100	100	100	97	100				
1/2 in	59	96	100	100	100	90	97.7				
3/8 in	37	84	100	100	100	55	90.7				
#4	6	33	89	92	100	34	69				
#8	2	9	57	48	99	25	40				
#16	1	4	37	25	98	21	27				
#30	1	3	23	13	91	17	19				
#50	1	2	14	7	67	10	12				
#100	0	2	8	4	25	7	6				
#200	0.3	1.2	4.1	1.9	8.3	4.3	3.0				
%USED	0	30	22	30	8	10	100				

Table A.7Percent Passing for S4 Mix with 10% RAP1 and PG 64-22OK Binder:Trial #3

Figure A.1 Mix Design Sheet for S3 Mix with 40% RAP1

Figure A.2 Mix Design Sheet for S4 Mix with 10% RAP1

Figure A.3 Mix Design Sheet for S3 Mix with 25% RAP1 (Provided by the Contractor)

PML - Silver Star Construct of a late shit material codes m00565 structure structure	OKLAHOMA DEPAR Asphalt Concrete, Type S4 (PG 64-2	RTMENT OF TRANSP	ORTATION Mix Design	n Report				
(Producor/Supplier and P/S Code) (Max to) 0.3M4- (ESALs) MATERIAL SOURCE %USED 5/8" Chips Hanson Aggregates @ Davis. OK(5008) -25 1/2" Chips Hanson Aggregates @ Davis. OK(5008) -42 Screenings Hanson Aggregates @ Davis. OK(6008) -42 Sand G.M.I. @ Oklahoma City. OK(1402) -15 Asphalt Cement (PC64-220K) Valero @ Ardmore, OK(m00352)	PMI - Silver Star	m00565	s4pv01	60792200				
MATERIAL SOURCE %USED 5/8° Chips Hanson Aggregates @ Davis. OK(5008) 25 3creenings GML @ Oklahoma City. OK(1002) 12 Asphalt Cement (PG64-220K) Valero @ Ardmore. OK(m00352)	(Producer/Supplier and P/S	Code)	(M) (E:	lix ID) <u>3M+</u> SALs)				
5/87 Chips Hanson Aggregates @ Davis. OK(5008) 25 Screenings Hanson Aggregates @ Davis. OK(5008) 13 Sand G.M.I. @ Oklahoma City. OK(1402) 15 Asphalt Cement (PG64-220K) Valero @ Ardmore. OK(m00352) 15 Aggregate formula Tolerance JMF Percent Passing Chips Chips Scrns Sand Aggregate Formula Tolerance 3/2" 68 93 100 100 ±0 ±0 1/2" Valero @ Ardmore. OK(m00352) Tolerance 3/3 ±4 Tolerance 3/3" 68 93 100 100 ±6 96 ±7 No. 4 20 34 73 99 57 52 ±7 No. 4 2 23 13 12 23 ±4 No. 30 2 2 15 ±4 No. 16 2 2 17 9.0 1.0 4.6 ±2 23 ±4 No. 100 2 1 ±4 No. 200 5.1 ±0 Wix Temperature @ discharge form Mixer, "F	MATERIAL		SOURCE		%USED			
1/2 Crips Hanson Aggregates (2) Davis, OK(5008) 18 Screenings Hanson Aggregates (2) Davis, OK(5008) 42 Sand G.M.L. @ Oklahoma City, OK(1402) 15 Aggregate 5/8" 1/2" Valero @ Ardmore, OK(m00352) 15 Percent Passing Chips Chips Scrns Sand Aggregate Formula Tolerance 3/4" 100 100 100 100 ±0 3/4" 100 100 88 88 ± 7 No. 4 20 34 73 99 57 52 ± 7 No. 4 20 34 73 99 57 52 ± 7 No. 6 2 2 31 91 28 28 ± 4 No. 30 2 2 23 83 23 23 ± 4 No. 200 1.3 1.7 9.0 1.0 4.6 4.6 ± 2 Spec. Grav. @ 77 °F 10.140 FAA. %LL Found 40 Min. Sand Equivalant Cement: Germa Action 67 40 Min. Sec Dans. %	5/8" Chips	Hanson Aggregates (Davis, OK(5008)		25			
Stand Tailson / regulates & 200000000000000000000000000000000000	Screenings	Hanson Aggregates ($\frac{1}{2}$ Davis, OK(5008)		18			
Asphalt Cement (PG64-22OK) Valero @ Ardmore, OK(m00352) Aggregate 3'4'' 5'8'' 1/2'' Valero @ Ardmore, OK(m00352) Aggregate 3'4'' 100 100 ±0 ±0 12'' 83 100 100 ±0 ±0 12'' 83 100 100 100 ±0 ±0 12'' 83 100 100 88 88 ±7 No. 4 20 34'' 74 99 57 52 ±7 No. 8 3 7 45 95 35 34 ±5 No. 16 2 2 23 83 23 23 23 23 24 ±4 No. 50 2 1 17 47 15 15 ±4 No. 200 1.3 1.7 9.0 1.0 4.6 4.6 ±2 Optimum Roadway Compaction Temperature, °F	Sand	G M L @ Oklahoma (City OK(1402)		15			
Asphalt Cement (PG64-220K) Valero @ Ardmore, OK(m00352) Aggregate Percent Passing 3/4" 6/8" 1/2" Scrns Sand Combined Aggregate 100 Job 100 $t 0$ 1/2" 83 100 96 96 $t - 1$ 3/8" 58 93 100 100 $t 0$ $t 0$ 3/8" 58 93 100 100 88 88 $t - 7$ No. 4 20 34 73 99 57 52 $t - 7$ No. 16 2 2 31 91 28 28 $t + 4$ No. 50 2 1 13 6 7 7 $t + 3$ No. 100 2 1 13 6 7 7 $t + 2$ %AC Asphalt Cement (PG64-220K) .0 .4.6 $t + 2$ 20 20 20 20 20 Uptimum Roadway Compaction Temperature, °F .004		Summer of Summerica						
Aggregate Percent Passing 3/4" 5/8" Chips 1/2" Chips Scms Sand Combined Aggregate Job Formula JMF Aggregate 3/4" 100 100 96 96 96 ±7 3/8" 58 93 100 100 88 88 ±7 No. 4 20 34 73 99 57 52 ±7 No. 6 3 7 45 95 35 34 ±5 No. 16 2 2 31 91 28 28 ±4 No. 30 2 2 23 83 23 23 ±4 No. 100 2 1 17 47 15 15 ±4 No. 200 1.3 1.7 9.0 1.0 4.6 4.6 ±2 %AC Asphalt Cement: Found Tests on Aggregates: Sand Equivalent 67 40 Min. Spec. Grav. @ 77 °F Found Gmm Gmm Gmm Found Found 75 40 Min. Sand Equivalent 88.8 30	Asphalt Cement (PG64-22OK)	Valero @ Ardmore, O	K(m00352)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aggregate 5/8" 1/2" Percent Passing Chips Chips 3/4" 100	s Scrns Sand	Combin Aggreg 10	ned Job ate Formula 0 100	JMF Tolerance ± 0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2" 83 100	400 400	9	6 96	± 7			
No. 4 20 37 45 95 31 32 17 No. 16 2 2 31 91 28 28 ± 4 No. 30 2 2 31 91 28 28 ± 4 No. 50 2 1 17 47 15 15 ± 4 No. 100 2 1 17 47 15 15 ± 4 No. 200 1.3 1.7 9.0 1.0 4.6 4.6 ± 2 %AC Asphalt Cement (PG64-220K) 5.1 ± 0.4 305 ± 20 Optimum Roadway Compaction Temperature, °F	3/8" 58 93 No.4 20 34	73 00	8 5	8 88 7 50	± /			
No. 16 2 2 31 91 26 28 ± 4 No. 30 2 2 23 83 23 23 ± 4 No. 30 2 2 23 83 23 23 ± 4 No. 50 2 1 17 47 15 15 ± 4 No. 200 1.3 1.7 9.0 1.0 4.6 4.6 ± 2 %AC Asphalt Cement (PG64-220K) 5.1 ± 0.4 305 ± 20 Optimum Roadway Compaction Temperature, °F 290 Tests on Asphalt Cement: Tests on Asphalt Cement: Spec. Grav. @ 77 °F 1.0140 F.A.A. %U 46.9 40 Min. Sand Equivalent 67 40 Min. 40.9 40 Min. Tests on Compressed Mixtures (at Design AC Content): LA. Abrasion 18 40 Max. Durability (DC) 75 40 Min. 67 40 Min. Modes 75 96 96 Fractured Faces 100/100 75/75 Min. Nmax 115 96.8 98 Gse 2.670 <td>No. 4 20 34</td> <td>45 95</td> <td>3</td> <td>5 34</td> <td>+ 5</td>	No. 4 20 34	45 95	3	5 34	+ 5			
No. 30 2 2 23 83 23 23 ± 4 No. 50 2 1 17 47 15 15 ± 4 No. 100 2 1 13 6 7 7 ± 3 No. 200 1.3 1.7 9.0 1.0 4.6 4.6 ± 2 %AC Asphalt Cement (PG64-220K) 5.1 ± 0.4 Mix Temperature @ discharge from Mixer, °F 305 ± 20 Optimum Roadway Compaction Temperature, °F	No. 16 2 2	31 91	2	8 28	± 4			
No. 50 2 1 17 47 15 15 ± 4 No. 100 2 1 13 6 7 7 ± 3 No. 200 1.3 1.7 9.0 1.0 4.6 4.6 \pm 2 %AC Asphalt Cement (PG64-220K) 5.1 \pm 0.4 Mix Temperature @ discharge from Mixer, °F 305 \pm 20 Optimum Roadway Compaction Temperature, °F 290 Tests on Asphalt Cement: 290 Spec. Grav. @ 77 °F 1.0140 F.A.A. %U 46.9 40 Min. Sand Equivalent 67 40 Min. Sand Equivalent 67 40 Min. Tests on Compressed Mixtures (at Design AC Content): LA Abrasion 18 40 Max. Motes 75 96 96 Fractured Faces 100/100 75/75 Min. Nmax 115 96.8 < 98	No. 30 2 2	23 83	2	3 23	± 4			
No. 100 2 1 13 6 7 7 ± 3 No. 200 1.3 1.7 9.0 1.0 4.6 4.6 ± 2 %AC Asphalt Cement (PG64-22OK) 5.1 ± 0.4 Mix Temperature @ discharge from Mixer, °F	No. 50 2 1	17 47	1	5 15	± 4			
No. 200 1.3 1.7 9.0 1.0 4.6 4.6 ± 2 %AC Asphalt Cement (PG64-220K) 5.1 ± 0.4 Mix Temperature @ discharge from Mixer, °F 305 ± 20 Optimum Roadway Compaction Temperature, °F 290 Tests on Asphalt Cement: Spec. Grav. @ 77 °F Found Found Found Required Sand Equivalent 67 40 Min. 5.1 ± 0.4 Tests on Aggregates: Spec. Grav. @ 77 °F 1.0140 F.A.A.,%U 67 40 Min. Sand Equivalent 67 40 Min. Mini 7 87.1 85.5-90.5 Insoluble Residue 88.8 30 Min. Nmax 115 96.8 98 Gse 2.670 Specimen Wt. 4335 Tests on Compressed Mixtures: Percent Gmb Gmm Dens, % of Dens, % of Dens, % of V.M.A. VMA. </td <td>No. 100 2 1</td> <td>13 6</td> <td></td> <td>7 7</td> <td>± 3</td>	No. 100 2 1	13 6		7 7	± 3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NO. 200 1.3 1.7	9.0 1.0	4.	6 4.6 5.1	± 2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mix Temperature @ discharge from	Mixer °E		305	+ 20			
Tests on Asprain Cement: Found Found Required Spec. Grav. @ 77 °F 1.0140 F.A.A. %U Found Required Spec. Grav. @ 77 °F 1.0140 F.A.A. %U Special Equivalent 67 40 Min. Tests on Compressed Mixtures (at Design AC Content): L.A. Abrasion 18 40 Max. Special Equivalent 67 40 Min. Special Equivalent 67 40 Min. Special Equivalent LA. Abrasion 18 40 Max. Mini 7 87.1 85.5-90.5 Insoluble Residue 88.8 30 Min. Nmax 115 96 Fractured Faces 100/100 75/75 Min. Minin Dens. % of Dens. % of V.M.A. V.M.A. % VFA % VP Asphait Cond Game	Optimum Roadway Compaction Tem	perature, °F		290	200 Aug Q			
Found Required Spec. Grav. @ 77 °F 1.00100 F.A.A. %U	Tests on Asphalt Cement:	nd	Tests on Aggregates:	Found Do	auirad			
Sand Equivalent	Spec Grav @ 77 °F 1.01	40	FAA %U	46.9 40	<u>Min</u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Sand Equivalent	67 40	Min.			
SGC Dens. % o Dens. % of Durability (DC) 75 40 Min. Nini 7 87.1 85.5-90.5 Insoluble Residue	Tests on Compressed Mixtures (al	t Design AC Content):	L.A. Abrasion	18 40	Max.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SGC Dens. % o	Dens. % of	Durability (DC)	75 40	Min.			
Nini787.185.5-90.5Insoluble Residue88.830 Min.Ndes759696Fractured Faces100/10075/75 Min.Nmax11596.8< 98	<u>Gmm</u>	<u>Gmm Reg'd</u>		0.72	p. 6.'			
Ndes 7.5 90 90 Particular Paces 100/100 7.5/75 Mill. Nmax 115 96.8 < 98	NINI / 87.1	85.5-90.5	Fractured Econo	400/400 75	WIN. 75 Min			
Hindx Ho Solo Ho Got Got Got Specimen Loss 2.670 Specimen Wt 4835 Percent Gmb Gmm Dens. % of V.M.A. V.M.A. V.M.A. % VFA % DP % DP Asphalt Gmm Dens. % of V.M.A. V.M.A. V.M.A. % VFA % VFA % DP % DP Asphalt Gmm Dens. % of V.M.A. V.M.A. V.M.A. % VFA % DP % DP Asphalt Gmm Dens. % of V.M.A. V.M.A. V.M.A. % VFA % DP % DP Asphalt Gmm Dens. % of V.M.A. V.M.A. % VFA % DP % DP Asphalt Gmm Dens. % of M.M.A. % VFA % UFA % DP % DP State 2.368 2.488 95.2 95-97 15.8 14 69.6 65-78 0.97 0.6-1.6 5.6 2.384 2.469 96.6 15.7 78.1 0.88 2.0 Layer Depth: $< 4'''_ TSR$	Nmax 115 96.8	< 98	Gse	2 699	TO WITE			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Miliax 110 50.0	. 00	Gsb	2.670				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Specimen Wt.	4835				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Tests on Compress	ed Mixtures:					
Aspnant Gimm Regra or Gimm (%) (Min.%) Regra	Percent Gmb Gmm Dens. % c	<u>of Dens. % of V.N</u>	<u>1.A. V.M.A.</u> %VFA	%VFA %DP	%DP			
4.6 2.535 2.507 95.1 10.6 50.5 1.09 5.1 2.368 2.488 95.2 95-97 15.8 14 69.6 65-78 0.97 0.6-1.6 5.6 2.384 2.469 96.6 15.7 78.1 0.88 Layer Depth: < 4"	Asphalt Gmm	Keg'a or Gmm (3	$\frac{6}{6}$ (Will $\frac{8}{6}$	Keq'a	ked.a			
5.6 2.384 2.469 96.6 15.7 78.1 0.88 Layer Depth: $\leq 4^{"}$ TSR: 0.85 0.80 Min. (0.75 Min. Field) Req'd Compacted Wt. 108.9 lbs./sq.yd./1" thickness Lab Permeability Test(cm/sec) - 3×10^{5} (Required: 12.5x10 ⁻⁵ Max.) APA Rut Test(mm) -1.39 (Required: 6 mm Max.) MicroDeval (% Wear) -7.7 (Required: 25 Max.) ITS (psi) - 270.3 (Required: 75 psi Min.)	5.1 2.355 2.507 95.1 5.1 2.368 2.488 95.2	95-97 15	8 14 69.6	65.78 0.97	06.16			
Layer Depth: < 4" TSR: 0.85_0.80 Min. (0.75 Min. Field) Req'd Compacted Wt. 108.9_lbs./sq.yd./1" thickness Lab Permeability Test(cm/sec) - 3 x10 ⁵ (Required: 12.5x10 ⁻⁵ Max.) APA Rut Test(mm) -1.39_(Required: 6 mm Max.) MicroDeval (% Wear) -7.7_(Required: 25 Max.) ITS (psi) - 270.3_(Required: 75 psi Min.)	5.6 2.384 2.469 96.6	15	.7 78.1	0.88	0.0 1.0			
MicroDeval (% Wear) - <u>7.7</u> (Required: 25 Max.) ITS (psi) - <u>270.3</u> (Required: 75 psi Min.)	Layer Depth: <u>< 4"</u> TSR: <u>0.85</u> 0.80 Min. (0.75 Min. Field) Req'd Compacted Wt. <u>108.9</u> lbs./sq.yd./1" thickness Lab Permeability Test(cm/sec) - <u>3 x10⁵</u> (Required: 12.5x10 ⁻⁵ Max.) APA Rut Test(mm) - <u>1.39</u> (Required: 6 mm Max.)							
	ITS (psi) - <u>270.3</u> (Required: 75 psi I	a: 25 Max.) Vin.)						

Figure A.4 Mix Design Sheet for S4 Mix without any RAP1 (Provided by the Contractor)

	OKL/	чнома	DEPAR	TMENT C	F TRAN	SPORT	ATION MI	x Design	Report		
Asphalt C	oncrete, T	<u>rvpe S3</u>	(PG64-22	20K)	asco00	<u>9</u>		Binder	-Recycle		
Schwarz	(Materia Paving Co	aiFull Nam) Inc.	e and Mater	lal Code)	m0043;	2		(Dest) s3pv01	gn Type) 60800904	1	
	(Pro	ducer/Sup	plier and P/S	Code)				(M	lx (D)	·	
									3ALs)		
							-	(2)	JALOJ		*****
1 1/0" D/		RIAL		The Dele	~~ (~ @	SOUF	RCE				%USED
5/8" Chir)S			Martin Ma	arietta @	Davis, O	K(5005)				22
Scroonia	and			The Dole	<u>se Co, @</u>	Davis, C	DK(5002)				23
Sand	90			The Dole	<u>se Co. (@</u> se Co. (@	Mustanç	3, OK				10
<u>Coarse</u> F	<u></u>			Stockplle	@ Plants	ite					25
Asphalt (Cement (P	G64-22	OK)	Valero @	Ardmore	, OK(m0	0352)				
Aggrega	te	1 1/2"	5/8"	Stone				Combir	ned J	ob	JMF
Percent	Passing	Rock	Chips	Sand	Scrns	Sand	R.A.P.	Aggreg	ate For	mula	Tolerance
З	/4"	77	100				99	9	7	97	± 0 ± 7
1	/2"	41	72		400		96	8	7	87	± 7
No	vo). 4	2	1	100	90		74	6	ა 1	61 ·	± 7
No	. 8	1	1	71	59	100	57	4	7	47	± 5
No.	30	1	1	35 14	38 26	98 91	40 37	3	3 4	33 24	± 4 ± 4
No.	50	1	0	5	19	50	28	1	5	15	± 4
No, 2	200	0.7	0,2	1.7	12,3	0.5	10 9.6	4.	2	4.2	± 3 ± 2
%AC (PG	64-220K) diaaba	ran from l	Alver PE			5.0			4.2	± 0.4
Optimum	Roadway	Compa	ction Tem	perature, °	F	· · · · · · · ·	 			290	± 20
Tests on	Asphalt	Cement	i Fo	und		Tes	ts on Aggi	regates:	Found	P	autrad
Spec. G	rav. @ 77	٩F	1.0	1 Est.		F.A.	A. %U		45.2	40	Min.
Tests on	Compres	sed Mi	xtures (at	Design A	C Conten	San nt) LA	d Equivale Abrasion	nt	81 23	45 40	i Min. Max
10030.00	SGC	Den	s.%o	Dens. % o	f	Dura	ability (DC)		74	40	Min.
Níni	8	G	imm (38.8	3mm Req* 85.5-89	d	IOC Frac	stured Eace		0.19	75	5/75 Min
Ndes	100		96	96		Gse			2,698		
Nmax	160	٤	96.8	< 98		Gsb Spe	cimen Wt.		2.680		
				Tasts a	n Compr	occod M	liviuroot				
Percent	<u>Gmb</u>	<u>3mm [</u>	Dens.%o	of Dens.	% of	<u>V.M.A.</u>	V.M.A.	%VFA	%VFA	%DF	°%DP
Asphalt	2/110 2	525	<u>Gmm</u>	<u>Req'd c</u>	of Gmm	<u>(%)</u>	<u>(Mīn.%)</u>	60.9	Req'd	1 00	Req'd
4.6	2.431 2	.505	97.0	95-	.97	13.5	13	77.9	65-76	0.96	0.6-1.6
5.1	2.449 2	.486	98.5			13.3		88.8		0.86	
Mix Laye	r Depth: >	<u>4 in.</u>		tal). Har and							
Compact	<u>80</u> 0.80 M led Wt 1	un. (0.7 10.9 lb:	o iviin. Fie s/sq.vd/ 1'	ia) Kequire ' thickness	ad						
Lab Perr	neability T	est(cm/s	sec) - <u>2 x1</u>	0 ⁻⁶ (Require	ed: 12.5x1	l0⁼ Max.)				
Recomm	l est Dept ended 3.0	th(mm) -) % Nev	• <u>1.15</u> (Ke v Asphalt •	quired: 5 m Cement	nm Max.)						
MicroDe	val (% We	ar) - <u>17.</u>	<u>8</u> (Require	əd: 25 Max)						
REVISE	- <u>275.0</u> (I D (GRAD	.) Effect	a: 75 psi N ive 7/14/0	an.) 8 per contr	actor's re	quest.					
	,										
			DECIFIC			NTO See	700 04	400 0- / /	010104		
	M	CEISS	FEGIFICA	ALION REU	GOIKEME	11 5 101	708-3(a-ç 708-10(a	פפון Rev. (-c)99 Rev.	6/3/04 6/3/04		
		_									

Determining of all faces and all colspan="2">Determining of all colspan="2"	Asphalt Concrete, Type S	3 (PG 64-2	2 OK) M	at'l. Code:	asco009	(Sub	mittal-Fo	or Accept	ance Or Binder - R	nly) ecycled	ID: B2					
Schwarz Priving U.S. 100 Discussion Discussion Schwarz Priving U.S. 100 (Countration of the Country of the	(Mat	erial Full Nan	ne and Materi	ial Code)		^a ctés:		(0	Nesign Type	and Design	Type ID)					
Schwarz Pewing (Meet RC, CK, C. 2007 HI (Product RU) (Counted RU) <th (counted="" colspan="2" ru)<="" th=""><th>Schwarz (Producer/Se</th><th>Paving Co upplier Name</th><th>and Produce</th><th>S # m0043 m/Supplier C</th><th>ode)</th><th></th><th>ta ta ta</th><th>S3qc007 (Mix</th><th>1100100 ID)</th><th>-</th><th></th><th></th><th></th><th></th></th>	<th>Schwarz (Producer/Se</th> <th>Paving Co upplier Name</th> <th>and Produce</th> <th>S # m0043 m/Supplier C</th> <th>ode)</th> <th></th> <th>ta ta ta</th> <th>S3qc007 (Mix</th> <th>1100100 ID)</th> <th>-</th> <th></th> <th></th> <th></th> <th></th>		Schwarz (Producer/Se	Paving Co upplier Name	and Produce	S # m0043 m/Supplier C	ode)		ta ta ta	S3qc007 (Mix	1100100 ID)	-				
Counter Counter (0) <	Schwarz Paving	(West OKC (Plat	, OK) - 300 nt Name and	TPH PL Plant ID)	ANT ID # m	00432-01				(Projec	t Number)	,				
Image: Constraining Image: Constraining <thimage: constraining<="" th=""> Image: Constraining</thimage:>	(Job Piece Number)	-	(Contr	act ID)	- 199		(County)				Highway)		-			
Iterative (Descriptionality (Book 1 and						< or	= 4 in. (100) mm)		3M+						
11/2 High Box Dolese Corr Databact Oct, PS # moo2745002 11/2 6/57 Chips Dolese Corr Databact Oct, PS # moo2745002 42 Fine R.A.P. 40 Asphalt Additive, Anti-Strip (Product Name, Material Code, Producter/Suppler Vame, Producer/Suppler Code) 40 Asphalt Cement Asphalt Cement Type PG 44-22 CK, scenced Xupler Vame, Producer/Suppler Code) (Product Name, Material Code, Producter/Suppler Vame, Producer/Suppler Code) (Producer/Suppler) Producer/Suppler:	(Co	ntractor)				(Dej	Produ	face)		(ESALs)			% 115	SE		
Del Colpis Doese Co (Daw), DK) Pris # mou/145002 42 Prine RAP. 40 Asphalt Additive, Anti-Strip Product Name, Material Code, Producer/Supplier Name, Producer/Supplier Code 40 Asphalt Cement Asphalt Cement Asphalt Cement Asphalt Cement Asphalt Cement Visit Composition Visit Common State Composition Visit Composition For Acceptance Only Not for production use Sizva Size Ref Fine Comb Material Code, Producer/Supplier Name, Producer/Supplier Code Sizva Size Ref Fine Comb For Acceptance Only Not for production use Sizva Size Ref Fine Comb Sizeva Size Comb 1 in (25 mm) 57 100 100 98 98 99 90 32 in (19 smm) 10 10 10 98 98 99 90 92 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12	1 1/2" Rc	ock				Dolese (Co (Davis, C	OK) P/S #	m002745	002			18	8		
Asphalt Additive, Anti-Strip Asphalt Cement Operation Reserve Code, Producer Name, Producer Name, Producer Suppler Your, Advancer Suppler Code Asphalt Cement Asphalt Cement Type PC 64-22 OL; Beendo J. Vieine Energy Corp. (Muskogee, Cr), m00788 Producer/Suppler: Size Size Size Size For Acceptance Only Not for production use Size Size Ref. Fine Comb Comb Advance Size Size Size Size Size Size Size Siz	5/8" Chij Fine R.A	.P.				Dolese	20 (Davis, 4	UK) P/5#	m002745	002			44	0		
Asphalt Additive, Anti-Strip Applait Cement Applait Cement Applait Cement Type Get 22 CK, acron03, Valero Energy Corp (Muskage, Codd Asphalt Cement Type Get 22 CK, acron03, Valero Energy Corp (Muskage, Codd Material Code, Producer/Supplier Kenne, Producer/Supplier Codd get with the state of the st	<u>an an an Anton Anna A</u> raith An An An An An Anna An Anna An															
Asphalt Additive, Anti-Strip (Produce Rums, Material Code, Producer/Suppler Name, Producer/Suppler N														-		
Asphalt Additive, Anti-Strip Produce Rement: Asphalt Cement: Asphalt Cement: Asphalt Cement: Asphalt Cement: Asphalt Cement: Complete Regulate Name, ProducerStappler Code Material Full Name, Material Code, ProducerStappler Code Material Full Name, Material Code, ProducerStappler Code Tor Acceptance Only Not for production use Sizes Size Comb For Acceptance Only Not for producerStappler Code Sizes Size Comb For Acceptance Only Sizes Size Comb Comb For Acceptance Only Sizes Size Comb Comb For Acceptance Only Sizes Size Comb Comb For Acceptance Only Size Size Comb Comb For Acceptance Only Size Size Size Size Comb Size Size Size																
Asphalt Additive, An1-Strip Testandon active a														1993		
Material Code, Producer/Supplier Name, Producer/Supplier Code) Producer/Supplier: Size 300 gr	Asphalt Additive, Anti	-Strip	Asphalt	ic Cement	(Product	Name, Mater 4-22 OK, s	ial Code, Pro	ducer/Supplie /alero Energ	y Corp (N	ducer/Suppl luskogee,	lier Code) OK), m00	0788				
Producer/Supplier: Image State Image State For Acceptance Only Not for production use Sieve Size 1 1/2" 6/8" File Comb. JMF Min. Mex. 1 In (25 mm) 97 100 100 98 99 92 22 22 20 23 100 100 10 12 12 17 16 11 19 12 12 12 17 16 11 19 100 100 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10	Asphalt Cement	: [<u> </u>	(Material Fu	ll Name, Mat	erial Code, P	Producer/Supp	lier Name, F	Producer/Sup	oplier Code)				
Producer/Supplier: § 4 xg § 6 xg § 6 xg § 4 xg § 6 xg § 4 xg § 6 xg § 4 xg § 6 xg Fine RA.P. For Acceptance Only Not for production use Sieve Size 1 102: Reek 58° RA.P. Comb. Age. JMF Min. Max. 1 in (25 mm) 97 100 100 100 99 99 99 99 1/2 in (12.5 mm) 30 91 96 92 93 99 99 99 99 99 99 99 99 99 99 99 90 93		(Davis /S # 5002	/S # 5002				14.45									
Sieve Size Not for production use Sieve Size Rock Chips R.A.P. Comb. JMF Min. Max. 1 in (25 mm) 97 100 100 98 99 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 39 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Producer/Supplier:	e Co 0274	e Co () P				R Alig			Fo	r Acce	ptanc	e Only	у		
Sieve Size 1 1/2" Sieve RAP. Comb. Comb. 3 is in (15 mm) 97 100 100 98 99 99 99 99 3/4 in (15 mm) 77 100 100 98 99 90 93 49 99 99 90 91 100 100 100 10		Doles	Doles 01 m0							No	ot for pr	oduct	ion use	e		
Sieve Size Rock Chips R.A.P. Age		1 1/2"	5/8"	Fine										-		
$\frac{1 \text{ in } (25 \text{ mm})}{31/4 \text{ in } (19 \text{ mm})} \frac{97}{73} \frac{100}{100} 1$	Sieve Size	Rock	Chips	R.A.P.						Agg.	JMF	Min.	Max.			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 in (25 mm)	97	100	100		1251-51				99	99	99	99			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3/4 in (19 mm) 1/2 in (12.5 mm)	73	100 91	100	- Aleren		- 194	1.1		95 83	95 83	88 76	100 90			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3/8 in (9.5 mm)	15	56	92						63	63	56	70			
$\frac{F(c_{11}^{c_{11}}(13) \text{ mm})}{400(300 \text{ mm})} \begin{array}{c} 0 & 0 & 33 \\ 0 & 0 & 33 \\ 450(300 \text{ mm}) & 0 & 0 \\ 450(300 \text{ mm}) & 0 & 0 \\ 12 & 12 & 8 & 16 \\ 12 & 12 & 12 & 16 \\ 12 & 12 & 12 & 16 \\ 13 & 15 & 16 & 16 \\ 10 & \text{min} & \frac{F(C)}{13} & \frac{F(C)}{13$	#4 (4.75 mm) #8 (2.36 mm)		1	70			·			29	29	22	36			
#50 (300 mm) 0 0 30 #50 (300 mm) 0 0 23 #100 (150 mm) 0 0 14 #200 (075 mm) 0.1 0.3 9.4 Content % 10.1 0.3 9.4 Mix temperature @ discharge from mixer: Laboratory compaction temperature: 325 (163) 20 (143) 10.1 10.1 10.1 sts on Asphalt Cement weedin Gravity @ 77 ° F Found 10.00 For Acceptance Only Not for production use 16.2 25 max. % sts on Compressed Mixtures (@ Design AC): max % Density Required % Density Required % Density Required % Design AC: % Mix temperature % Density Required % Densit	#16 (1.18 mm)	ŏ	ŏ	38		1.1				15	15	11	19			
#100 (150 nm) 0 0 23 14 9 9 9 5 13 #200 (075 mm) 0.1 0.3 9.4 5.5 8 9 1.9 5.5 13 2 Content % 0.1 0.3 9.4 5.5 8 1.0 1.0 3.9 3.9 1.9 5.5 Mix temperature @ discharge from mixer: 200 (143) ± 20 °F (± 10 °C) Required 1.0 1.0 min. % Laboratory mixing temperature: 300 (149) For Acceptance Only Not for production use Tests on Aggregates 100/100 min. % ists on Compressed Mixtures (@ Design AC) % Density Required 85.5 - 89.4 85.5 - 89.4 % Micro-Deval 16.2 25 max % ists on Compressed Mixtures (@ Design AC) % Density Required % Density Required % VMA Req. % VFA Required % ists on Compressed Mixtures % Density Required % Density Required % Density Required % VMA Req. % VFA Required % ists on Compressed Mixtures % Density Required % Density Required	#30 (.600 mm)	0	0	30			<u>)</u> 23			12	12	8	16			
$\frac{1}{300} (130 \text{ mm}) \\ \frac{1}{300} (13) \\ \frac{1}{35} (13) \\ \frac{1}{55} \\ \frac{1}{55}$	#50 (.300 mm)	0	0	23	1.100.00					9	9	5	13			
2 Content % 0.1 0.3 9.4 5.5 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9 1.9 1.9 3.9	#100 (.150 mm)		0	14	1.00	1.0	1.12			6	6	3	9			
$\frac{F(C)}{Optimum roadway compaction temperature: 290 (143)} \\ \frac{F(C)}{Laboratory mixing temperature: 290 (143)} \\ \frac{F(C)}{Laboratory compaction temperature: 290 (143)} \\ \frac{F(C)}{Laboratory compaction temperature: 290 (143)} \\ \frac{F(C)}{Laboratory compaction temperature: 325 (163)} \\ \frac{F(C)}{Laboratory compaction temperature: 320 (149)} \\ \frac{F(C)}{Laboratory (149)} \\ \frac{F(C)}{P(C)} \\ \frac{F(C)}$	#200 (.075 mm) C Content %	0.1	0.3	9.4 5.5		. <u>,</u> .				5.1	3.9 5.1	4.7	5.9 5.5	_		
State State <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
Databasity compaction temperature: 220 (143) Laboratory compaction temperature: 320 (149) Laboratory compaction temperature: 320 (149) For Acceptance Only Not for production use Sists on Asphalt Cement Secific Gravity @ 77 ° F 1.0100 For Acceptance Only Not for production use Sists on Compressed Mixtures (@ Design AC) % Density % % Density 96 max 160 Sists on Compressed Mixtures % Density 96 System Section Compressed Mixtures % Density 96 System	Mix tempera	ature @ dis	charge from	n mixer:	°F (°C) 305 (152) 200 (142)	± 20 °F	<u>uired</u> (± 10 °C)	Tests	on Aggre	gates	Requ	ired	Units	s		
Laboratory compaction temperature: 300 (149) Fractured Faces 100/100 85/80 min. % ests on Asphalt Cement For Acceptance Only For Acceptance Only Micro-Deval 16.2 25 max. % ists on Compressed Mixtures (@ Design AC) % Density Required % Micro-Deval 16.2 25 max. % ists on Compressed Mixtures % Density Required 96 Gase 2.704 g g max 160 97.9 < 98.4	Li Li	aboratory n	nixing temp	erature:	325 (143)			Flat and El	ongated	0	10	max.	%			
Sisted mapping Point Point<	Labora	atory compa	iction temp	Eound	300 (149)			LA Abrasic	n	22	40	min. max.	%			
sts on Compressed Mixtures (@ Design AC) % Density mi % Density Required 85.5 - 89.4 96 % Gase 2.704 Gase g ni 8 160 97.0 < 98.4	becific Gravity @ 77 ° F			1.0100	Not for	ceptance production	on use	Micro-Dev	ar	16.2	25	max.	70			
# Gyr. of Gmm % Density Required 85.5 - 89.4 Gase 2.704 des 100 96 96 Gase 2.704 max 160 97.9 < 98.4	ests on Compressed Mix	tures (@ D	% Density	esta s												
des 100 Tests on Compressed Mixtures Specimen Weight 4916 g %AC Gmb Gmb Smm % Density % VMA Keq. % VFA % VFA Required g %AC Gmb Gmb Smm % Density % VMA Req. % VFA % VFA Required g 4.5 2.391 2.514 95.1 min. max. 14.0 min. 65.0 min. max. 5.0 2.400 2.503 95.9 97 14.1 13 70.9 65 76 5.5 2.405 2.487 96.7 14.4 77.1 7.1 Dust Prop. DP Required ITS (PSI) 133.6 75 (min.) Field (min.): 0.75 0.9 0.6 1.6 Compacted Wt. (Ibs/sy/1" thick) =109.6 @ 5.1 % Asphalt Cement	ini	<u># Gyr.</u> 8	of Gmm 85.5	% Densit 85.5	- 89.4											
max 160 97.9 < 98.4 Gab 2.655 g Specimen Weight 4916 g g g g g %AC Gmb Gmm of Gmm % Density % VMA KVMA KVFA % VFA Required g 4.5 2.391 2.514 95.1 min. max. 14.0 min. 65.0 min. max. 5.0 2.400 2.503 95.9 95 97 14.1 13 70.9 65 76 5.5 2.405 2.487 96.7 14.4 77.1 14.4 77.1 Dust Prop. DP Required ITS (PSI) 133.6 75 76 76 76 1.0 min. max. 133.6 75 min.): 0.75 0.9 0.6 1.6 Compacted Wt. (lbs/sy/1" thick) =	des	100			96			Gse		2.704						
Tests on Compressed Mixtures % Density % VMA % C Gmb Gmm % Density 4.5 2.391 2.514 95.1 min. max. 14.0 min. 65.0 min. max. 5.0 2.400 2.503 95.9 95 97 14.1 13 70.9 65 76 5.5 2.405 2.487 96.7 14.4 77.1 T Dust Prop. DP Required ITS (PSi) 133.6 75 (min.) Field (min.): 0.75 0.9 0.6 1.6 Compacted Wt. (lbs/sy/1" thick) =109.6 @ 5.1 % Asphalt Cement 0.8 0.8 0.6 1.6 Compacted Wt. (lbs/sy/1" thick) =109.6 @ 5.1 % Asphalt Cement	max	160	97.9	<	98.4]		Gsb Specimen	Weight	2.655 4916			g			
%AC Gmb Gmm of Gmm % Density Required % VMA Req. % VFA % VFA Required 4.5 2.391 2.514 95.1 min. max. 14.0 min. 65.0 min. max. 5.0 2.400 2.503 95.9 95 97 14.1 13 70.9 65 76 5.5 2.405 2.487 96.7 14.4 77.1 14.4 77.1 Dust Prop. DP Required ITS (PSI) 133.6 75 (min.) Field (min.): 0.75 65 0.9 0.6 1.6 Compacted Wt. (lbs/sy/1" thick) =109.6 @ 5.1 % Asphalt Cement 0.8 0.6 1.6 Compacted Wt. (lbs/sy/1" thick) =109.6 @@ 5.1 % Asphalt Cement				Tests on % Density	Compress	ed Mixture	15	% VMA]				
5.0 2.400 2.503 95.9 95 97 14.1 13 70.9 65 76 5.5 2.405 2.487 96.7 14.4 13 70.9 65 76 Dust Prop. DP Required 1.0 min. max. 133.6 75 (min.) 0.9 0.6 1.6 Compacted Wt. (lbs/sy/1" thick) =109.6 Field (min.): 0.75 0.8 0.8 0.6 1.6 Compacted Wt. (lbs/sy/1" thick) =0.6 $@$ 5.1 % Asphalt Cement	%AC 4.5	<u>Gmb</u> 2.391	<u>Gmm</u> 2.514	of Gmm 95.1	% Density min.	Required max.	% VMA 14.0	Req.	% VFA 65.0	% VFA R	tequired max.					
Dust Prop. DP Required ITS (PSI) 133.6 75 (min.) 1.0 min. max. TSR 0.86 Design (min.): 0.80 Field (min.): 0.75 0.9 0.6 1.6 Compacted Wt. (lbs/sy/1" thick) =062 @ 5.1 % Asphalt Cement 0.8 0.8	5.0 5.5	2.400 2.405	2.503 2.487	95.9 96.7	95	97	14.1 14.4	13	70.9 77.1	65	76					
1.0 min. max. 158 0.86 Design (min.): 0.80 Field (min.): 0.75 0.9 0.6 1.6 Compacted Wt. (lbs/sy/1" thick) = _109.6 @2 5.1 % Asphalt Cement	Dust Prop		quired		ITS (DO)	133.6	75 (min.)									
0.9 0.6 1.6 Compacted Wt. (lbs/sy/1" thick) = <u>109.6</u> @ <u>5.1</u> % Asphalt Cement	Dust Prop.	DPRE	max		TSP	0.86	Design (g	nin): 0.80	Field (m	nin.): 0.75						
	1.0	mun.	THE A		131	0.00	Dealgh (in	mi.y. 0.00	1 1010 (11							

Figure A.6 Mix Design of S3+40% RAP2

Figure A.7 Mix Design of S4+10% RAP2

A.D. No.	011-0	25-008	Mix Type	S4 Recycle	Deslan #	S4P	V01608027	00		
Project #		Various Projec	ts	Location	Various Pr	olects	ESALs	3M-+	-	
Contractor	Schw	arz Paving C	o., Inc.		Produc	er Schwar	z Paving Co	., Inc.	•	
								····	-	
A	ggregate T	pe		Ac	rdregate Used		% US	SED		
	5/8" Chips		-	Dolese	@ Davls, Ok (5002)		30)		
	' Screenings	}		Dolese	@ Davls, Ok (5002)		18	3	-	
	Stone Sand	t i		Dolese	@ Davis, Ok (5002)		17	7	-	
	Sand	····		Doles	e @ Mustang, Ok		10	}	-	
	BAP			p	ant Stockpile		25	, i	•	
			· · · · · · · · · · · · · · · · · · ·	· ·					-	
······	PG 64-22	ЭК		Valero @ A	rdmore, Okla.(m003	52)			-	
					· · · · · · · · · · · · · · · · · · ·				•	
Sieve	5/8"	. .		0		Comb,		~~.		
Size	<u>Chips</u>	Screenings	Stone Sand	Sand	RAP	Add.	JME	Tol		
1 1/2"	100	100	100	100	100	100	100	0		
1"	100	100	100	100	100	100	100	0		
3/4"	100	100	100	100	99	100	100	±7		
1/2"	98	100	100 .	100	95	98	98	± 7		
3./8"	69	100	100	100	87	87	87	±7		
No. 4	8	86	99	100	67	61	61	±7		
No. 8	2	58	67	100	54	46	46	± 5		
No. 16	2	40	36	99	44	35	35	± 4		
No. 30	1	28	19	95	36	27	27	± 4		
NO. 50	1	20	9	00	26	19	19	±4		
No. 100	1	16	. 4	10	10	9	9	±3		
No. 200	1.0	12.4	2,5	1.0	8.7	5.2	5.2	±2		
% Asphait			Mar Dee	-	4.9		4.0	± 0,4		
MIX I ampe	rature @ all	scharge from	Mixer, Deg.	Г 			325			
Optimum F	loadwayCor	npaction Ten	nperature, De	ig. F			305			
					·				-	
nsts on A	spnan Cen	nent			Tests on Adgregation	25			<u>Red.</u>	
pecific Gr	avity	1.01			Sand Equivalent			80	40 min.	
Toolo on C		d Misterson /	at Daelan AC	Contant	Fille Aggregate Ang	ularity		40,0	45 min.	
Tests on C	20mpressed	Done % of	Dens % of	Comenn	LA, ADIASION			24.4	40 max.	
	300	Gmm	Grow regid		Insoluphia Residua			74 40 4	40 min.	
Mial	8	88.8	<u>anni 124 u</u> ~99		Incoluziole riesione			0 1 2 9/	40 min.	
Ndec	100	96.1	96		Fractured Faces			100/100	65/65	
Nmey	160	97.4	~98		RSG			2 674	00/00	
NICLUX	100	0711	100		ESG			2 695		
					Specimen Weight			4885		
					Flat and Elongated I	Particles		0	10 max.	
			<u>Tests on C</u> e	ompressed	<u>Mixtur</u> es :					
	<u>Gmb</u>	<u>Gmm</u>	Dens. % of	Density	<u>V.M.A.</u>	<u>Alr</u>	<u>V.F.A.</u>	<u>V.F.A</u> .	<u>% DP</u>	% DP Reg.
% AC			Gmm	Rea.		Voids		Beg'd		
4.6	2,405	2,503	96.1		14.2	3.9	72.6		1.21	
51	2 420	2.483	97 P	95-97	13.8	2.0	84 2	65-78	1 08	06-16
56	2 442	2 464	99.1	~~ · • /	13.8	n a	017	00-70	0.00	V/0-1-0
0.0	6,990	£.707	vv. i		1070	0.0	20.7		0.90	
Tensile Si	trendth Rat	io:	0.81	0.80 Min. (0.75 Min. Field) Rect	ired				
ka/sa.m/	25mm thic	kness	58.8	@	4.6	% Asphal	t Cement			
Mix Lavo	r Dooth	100mm >		e		1011001100	(oomont			
	a bepun	TANHIT >	-							
						•				
		TION PRO		~						
MEETS S	SPECIFIC/	VIION REQ		<u>></u>						
		F	iauro Λ	g Miv	Decian of S	1125% D/	102			

Figure A.8	Mix Design of	S4+25%RAP2
------------	---------------	------------